2023屆北京東城55中高考適應性考試數學試卷含解析_第1頁
2023屆北京東城55中高考適應性考試數學試卷含解析_第2頁
2023屆北京東城55中高考適應性考試數學試卷含解析_第3頁
2023屆北京東城55中高考適應性考試數學試卷含解析_第4頁
2023屆北京東城55中高考適應性考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.52.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立3.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.4.設,滿足約束條件,則的最大值是()A. B. C. D.5.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.6.設,集合,則()A. B. C. D.7.執行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1288.《九章算術》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.9.已知集合,集合,則()A. B. C. D.10.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.11.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.12.點為不等式組所表示的平面區域上的動點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數物價各幾何?”借用我們現在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數和物品價格?答:一共有_____人;所合買的物品價格為_______元.14.觀察下列式子,,,,……,根據上述規律,第個不等式應該為__________.15.若函數恒成立,則實數的取值范圍是_____.16.如圖,已知扇形的半徑為1,面積為,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.18.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區間;(2)已知,若,,,求的面積.19.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質,健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數學期望為依據,預測此次促銷活動后健身館每天的營業額.20.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.21.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數據,得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數據的平均值和樣本方差;(結果取整數,同一組中的數據用該組區間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數,求的分布列和數學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.22.(10分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.2、C【解析】

A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據冪函數的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎題.3、D【解析】

由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.4、D【解析】

作出不等式對應的平面區域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,屬于基礎題.5、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.6、B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.7、C【解析】

根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執行上述程序框圖,可得第1次循環,滿足判斷條件,;第2次循環,滿足判斷條件,;第3次循環,滿足判斷條件,;第4次循環,滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、B【解析】

由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.9、D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區間的定義,對數函數的單調性,以及并集的運算.10、B【解析】

建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.11、A【解析】

作于,于,分析可得,,再根據正弦的大小關系判斷分析得,再根據線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據題意確定角度的正弦的關系,同時運用線面角的最小性進行判定.屬于中檔題.12、B【解析】

作出不等式對應的平面區域,利用線性規劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規劃的應用,根據目標函數的幾何意義結合斜率公式是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、753【解析】

根據物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數學文化及一元一次方程的應用,屬于中檔題.14、【解析】

根據題意,依次分析不等式的變化規律,綜合可得答案.【詳解】解:根據題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規律.15、【解析】

若函數恒成立,即,求導得,在三種情況下,分別討論函數單調性,求出每種情況時的,解關于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當時,令解得,令,解得,單調遞減,令,解得,單調遞增,故在時,有最小值,,若恒成立,則,解得;當時,恒成立;當時,,單調遞增,,不合題意,舍去.綜上,實數的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數的取值范圍,是常考題型。16、【解析】

根據題意,利用扇形面積公式求出圓心角,再根據等腰三角形性質求出,利用向量的數量積公式求出.【詳解】設角,則,,所以在等腰三角形中,,則.故答案為:.【點睛】本題考查扇形的面積公式和向量的數量積公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.【點睛】本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,屬難題.18、(1)最小正周期為,單調遞增區間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.19、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(1)結果求均值.【詳解】解:(1)由題設知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數學期望(元)(2)此次促銷活動后健身館每天的營業額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.20、(1)見解析;(2).【解析】

(1)先連接,根據線面平行的判定定理,即可證明結論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數據求解,即可得出結果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于常考題型.21、(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【解析】

(1)根據頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數學期望;(3)由第一問可知服從正態分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論