




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km2.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形3.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數關系的圖象為下列選項中的A. B. C. D.4.已知,則的值為A. B. C. D.5.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)6.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數據8,8,7,10,6,8,9的眾數和中位數都是8D.若甲組數據的方差S="0.01",乙組數據的方差s=0.1,則乙組數據比甲組數據穩定7.化簡的結果為()A.﹣1 B.1 C. D.8.方程5x+2y=-9與下列方程構成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-89.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°10.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.11.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮新增就業1351萬人,數據“1351萬”用科學記數法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×10812.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線l1∥l2,則∠1+∠2=____.14.某商品原價100元,連續兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.15..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.16.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.17.如果正比例函數的圖像經過第一、三象限,那么的取值范圍是__.18.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.20.(6分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.21.(6分)現有四張分別標有數字1、2、2、3的卡片,他們除數字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數字不同的概率()A. B. C. D.22.(8分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°23.(8分)臺州市某水產養殖戶進行小龍蝦養殖.已知每千克小龍蝦養殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數關系如圖所示:(1)求日銷售量y與時間t的函數關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養殖戶有多少天日銷售利潤不低于2400元?24.(10分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.25.(10分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉到B1的路線長.26.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.27.(12分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數軸上表示出來.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
正負數的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數在生活中的應用.注意用正負數表示的量必須是具有相反意義的量.2、C【解析】
根據平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵3、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數關系的圖象應為定義域為[0,3],開口向上的二次函數圖象;故選D.【點睛】本題主要考查的是二次函數解析式的求法及二次函數的圖象特征,解答本題的關鍵是根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.4、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.5、B【解析】試題分析:根據網格結構,找出對應點連線的垂直平分線的交點即為旋轉中心.試題解析:由圖形可知,對應點的連線CC′、AA′的垂直平分線過點(0,-1),根據旋轉變換的性質,點(1,-1)即為旋轉中心.故旋轉中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉.6、C【解析】
眾數,中位數,方差等概念分析即可.【詳解】A、中獎是偶然現象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調查就行了,故是錯誤的;C、這組數據的眾數和中位數都是8,故是正確的;D、方差越小越穩定,甲組數據更穩定,故是錯誤.故選C.【點睛】考核知識點:眾數,中位數,方差.7、B【解析】
先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.8、D【解析】試題分析:將x與y的值代入各項檢驗即可得到結果.解:方程5x+2y=﹣9與下列方程構成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數的值.9、D【解析】
①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.10、B【解析】從幾何體的正面看可得下圖,故選B.11、B【解析】
根據科學記數法進行解答.【詳解】1315萬即13510000,用科學記數法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數法,科學記數法表示數的標準形式是a×10n(1≤│a│<10且n為整數).12、C【解析】
先根據三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、30°【解析】
分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質求得答案.【詳解】如圖,分別過A、B作l1的平行線AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案為30°.【點睛】本題主要考查平行線的性質和判定,掌握平行線的性質和判定是解題的關鍵,即①兩直線平行?同位角相等,②兩直線平行?內錯角相等,③兩直線平行?同旁內角互補.14、20%.【解析】試題分析:根據原價為100元,連續兩次漲價x后,現價為144元,根據增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.15、4【解析】
先根據圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.16、【解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.17、k>1【解析】
根據正比例函數y=(k-1)x的圖象經過第一、三象限得出k的取值范圍即可.【詳解】因為正比例函數y=(k-1)x的圖象經過第一、三象限,所以k-1>0,解得:k>1,故答案為:k>1.【點睛】此題考查一次函數問題,關鍵是根據正比例函數y=(k-1)x的圖象經過第一、三象限解答.18、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關的綜合性題目,用到的知識點有:切線的性質、相似三角形的判定與性質、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質.20、證明見解析.【解析】
過點B作BF⊥CE于F,根據同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據矩形的對邊相等可得AE=BF,從而得證.【詳解】證明:如圖,過點B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.21、A【解析】分析:根據題意畫出樹狀圖,從而可以得到兩次兩次抽出的卡片所標數字不同的情況及所有等可能發生的情況,進而根據概率公式求出兩次抽出的卡片所標數字不同的概率.詳解:由題意可得,兩次抽出的卡片所標數字不同的概率是:,故選:A.點睛:本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數m除以所有等可能發生的情況數n即可,即.22、1+3.【解析】
先根據乘方、負指數冪、絕對值、特殊角的三角函數值分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】﹣16+(﹣)﹣2﹣|﹣2|+2tan60°=﹣1+4﹣(2﹣)+2,=﹣1+4﹣2++2,=1+3.【點睛】本題主要考查了實數的綜合運算能力,解決此類題目的關鍵是熟記特殊角的三角函數值,熟練掌握負整數指數冪、二次根式、絕對值等考點的運算法則.23、(1)y=﹣2t+200(1≤t≤80,t為整數);(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】
(1)根據函數圖象,設解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數法求解可得;
(2)設日銷售利潤為w,根據“總利潤=每千克利潤×銷售量”列出函數解析式,由二次函數的性質分別求得最值即可判斷;
(3)求出w=2400時t的值,結合函數圖象即可得出答案;【詳解】(1)設解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數);(2)設日銷售利潤為w,則w=(p﹣6)y,當1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【點睛】本題考查二次函數的應用,熟練掌握待定系數求函數解析式、由相等關系得出利潤的函數解析式、利用二次函數的圖象解不等式及二次函數的圖象與性質是解題關鍵.24、(1)證明見解析;(2)4.8.【解析】
(1)連結OE,根據等腰三角形的性質可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據切線的性質可得EF⊥OE,由此即可證得EF⊥AB;(2)連結BE,根據直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質求得AE=EC=8,在Rt△BEC中,根據勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點睛】本題考查了切線的性質定理、圓周角定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 納米材料在生物醫學的應用
- 男病人會陰護理規范
- 項目勞務合同協議書
- 餐飲合作加盟協議書
- 公司簽落戶承諾協議書
- 裝修公司結款協議書
- 供貨散裝酒合同協議書
- 車輛后期維護協議書
- 高層干部聘用協議書
- 足浴技師底薪協議書
- 中醫藥進校園
- 2024年福建泉州惠安縣互聯網網格員招考聘用(高頻重點復習提升訓練)共500題附帶答案詳解
- 醫院污水處理培訓教學
- 機務維修作風課件講解
- 垃圾清運服務投標方案技術方案
- 店長入股門店合同范本
- 湖北省武漢市漢陽區2023-2024學年七年級下學期期末數學試題
- 2024年大學生西部計劃志愿者招募筆試題庫(供參考)
- 安全技術交底記錄(工人入場)
- 醫療器械質量體系迎審
- 馬拉松賽事運營服務方案
評論
0/150
提交評論