




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列的通項公式為.則“”是“為遞增數列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要2.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.33.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.4.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.25.已知,且,則的值為()A. B. C. D.6.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.7.在中,,,,為的外心,若,,,則()A. B. C. D.8.若變量,滿足,則的最大值為()A.3 B.2 C. D.109.將函數的圖象先向右平移個單位長度,在把所得函數圖象的橫坐標變為原來的倍,縱坐標不變,得到函數的圖象,若函數在上沒有零點,則的取值范圍是()A. B.C. D.10.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件11.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.12.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側面中,與所成的銳二面角相等的側面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)16.如圖,在平行四邊形中,,,則的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.18.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.19.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.20.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.22.(10分)已知函數.(Ⅰ)求的值;(Ⅱ)若,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據遞增數列的特點可知,解得,由此得到若是遞增數列,則,根據推出關系可確定結果.【詳解】若“是遞增數列”,則,即,化簡得:,又,,,則是遞增數列,是遞增數列,“”是“為遞增數列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據數列的單調性求解參數范圍,屬于基礎題.2.B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.3.C【解析】
如圖所示:切點為,連接,作軸于,計算,,,,根據勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.4.B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.5.A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.6.A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.7.B【解析】
首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.8.D【解析】
畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,屬于中檔題.9.A【解析】
根據y=Acos(ωx+φ)的圖象變換規律,求得g(x)的解析式,根據定義域求出的范圍,再利用余弦函數的圖象和性質,求得ω的取值范圍.【詳解】函數的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變為原來的倍(縱坐標不變),得到函數的圖象,∴周期,若函數在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數形結合思想,構建不等關系式,求解可得,屬于較難題.10.A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.11.C【解析】
根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養.12.C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.14.【解析】
取基向量,,然后根據三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數使得,,,,,,故答案為:.【點睛】本題考查了平面向量數量積的性質及其運算,屬中檔題.15.①②③④【解析】
取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質即可判斷;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面角,考查空間想象能力與轉化思想.16.【解析】
根據ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數量積的運算,考查了計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.18.(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單調性和基本不等式的應用求出參數的范圍.【詳解】(1)數列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數),所以數列是首項為1,公差為的等差數列.所以,整理得.(2)數列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,疊乘法的應用,函數的單調性在數列中的應用,基本不等式的應用,主要考察學生的運算能力和轉換能力,屬于中檔題型.19.(1),;(2)證明見解析.【解析】
(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.20.(1);(2)證明詳見解析,;(3).【解析】
(1)根據題意列出關于的等式求解即可.(2)先根據對稱性,直線過的定點一定在軸上,再設直線的方程為,聯立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,聯立,消去得到,設點,則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點.當過點的直線的斜率不存在時,直線的方程為,此時,當過點的直線斜率存在時,設直線的方程為,且在橢圓上,聯立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點睛】本題主要考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工智能與醫學的融合創新
- 手術室恢復室護理
- 禹城公務員試題及答案
- 用藥法律法規試題及答案
- 銀行運管條線面試題目及答案
- 銀行崗位筆試題庫及答案
- 醫院安全消防試題及答案
- 2025年蘇教版數學六年級下冊期末測試題及答案(典型題)(六)
- 煙臺歷年公務員面試題及答案
- 學校消防測試題及答案
- 層序地層學在油氣勘探開發中的應用
- 中國鋁業遵義氧化鋁有限公司氧化鋁工程分解分級槽基礎工程 施工組織設計
- 《獻給阿爾吉儂的花束》讀后感優秀5篇
- 中醫臨床路徑
- 輻射及其安全防護(共38張PPT)
- 初中信息技術-算法基礎知識教學教學課件
- 訴訟文書送達地址確認書
- 《中興通訊績效管理制度》-人事制度表格【管理資料】
- 鐵路工務技術手冊
- (完整版)硬件測試規范
- 電腦節能環保證書
評論
0/150
提交評論