吉林省松原市2022-2023學年高三第一次模擬考試數學試卷含解析_第1頁
吉林省松原市2022-2023學年高三第一次模擬考試數學試卷含解析_第2頁
吉林省松原市2022-2023學年高三第一次模擬考試數學試卷含解析_第3頁
吉林省松原市2022-2023學年高三第一次模擬考試數學試卷含解析_第4頁
吉林省松原市2022-2023學年高三第一次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.32.是虛數單位,則()A.1 B.2 C. D.3.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.154.已知函數,下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數,又是周期函數C.的圖像關于直線對稱 D.的最大值是5.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,6.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關7.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.18.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.9.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了10.已知的面積是,,,則()A.5 B.或1 C.5或1 D.11.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.12.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實數,向量,,且,則____________.14.函數在區間內有且僅有兩個零點,則實數的取值范圍是_____.15.已知函數,令,,若,表示不超過實數的最大整數,記數列的前項和為,則_________16.已知向量,且向量與的夾角為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.18.(12分)在直角坐標系中,直線的參數方程為為參數),直線的參數方程(為參數),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.19.(12分)已知函數,.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數的取值范圍.20.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.21.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.22.(10分)在某社區舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

將圓的方程化簡成標準方程,再根據垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據垂徑定理求解直線中參數的方法,屬于基礎題.2、C【解析】

由復數除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數的除法和模,屬于基礎題.3、B【解析】

由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.4、D【解析】

通過三角函數的對稱性以及周期性,函數的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數,周期函數,正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數周期性和對稱性的判斷,利用導數判斷函數最值,屬于中檔題.5、B【解析】

試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.6、B【解析】

根據三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.7、C【解析】

連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.8、A【解析】

先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.9、C【解析】

假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.10、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.11、B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.12、D【解析】

對于A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據元素與集合的關系即可做出判斷.【詳解】選項A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】

由,,且,得,解得,則,則.14、【解析】

對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.15、4【解析】

根據導數的運算,結合數列的通項公式的求法,求得,,,進而得到,再利用放縮法和取整函數的定義,即可求解.【詳解】由題意,函數,且,,可得,,又由,可得為常數列,且,數列表示首項為4,公差為2的等差數列,所以,其中數列滿足,所以,所以,又由,可得數列的前n項和為,數列的前n項和為,所以數列的前項和為,滿足,所以,即,又由表示不超過實數的最大整數,所以.故答案為:4.【點睛】本題主要考查了函數的導數的計算,以及等差數列的通項公式,累加法求解數列的通項公式,以及裂項法求數列的和的綜合應用,著重考查了分析問題和解答問題的能力,屬于中檔試題.16、1【解析】

根據向量數量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數量積的定義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】

(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結合,可證明平面.再根據面面垂直的判定定理,可證平面平面.(2)以為坐標原點,建立如圖所示的空間直角坐標系,由點F在線段上,設,得出的坐標,進而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結合為平面的一個法向量,用向量法即可求出與的夾角,結合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點,連接,,,平面平面平面..平面平面(2)以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設.則設平面的一個法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個法向量,二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.18、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數,即可求出曲線的普通方程;(2)設Q點的直角坐標系坐標為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯立直線,方程消去參數k,得曲線C的普通方程為整理得.(2)設Q點的直角坐標系坐標為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數方程化為普通方程,普通方程化為極坐標方程,極徑的求法,屬于中檔題.19、(1);(2)【解析】

(1)對函數求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數,對函數求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(),當時,,在時為增函數,所以,舍;當時,開口向上,對稱軸為,,所以在時為增函數,所以,舍;當時,二次函數開口向下,且,所以在時有一個零點,在時,在時,①當即時,在小于零,所以在時為減函數,所以,符合題意;②當即時,在大于零,所以在時為增函數,所以,舍.綜上所述:實數的取值范圍為【點睛】本題考查函數的導數,利用導數求函數的單調區間及函數的最小值,屬于中檔題.處理函數單調性問題時,注意利用導函數的正負,特別是已知單調性問題,轉化為函數導數恒不小于零,或恒小于零,再分離參數求解,求函數最值時分析好單調性再求極值,從而求出函數最值.20、【解析】

由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數方程為,整理得,直線的方程與曲線的方程聯立,,整理得,設,則,根據弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數方程為,消去,整理得,將直線的方程與曲線的方程聯立,,消去,整理得,設,則,所以,將,代入上式,整理得.【點睛】本題考查參數方程,極坐標方程的應用,結合弦長公式的運用,屬于中檔題.21、(1)(2)【解析】

(1)先分別表示出,然后根據求解出的值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論