


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.2.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數的值為()A. B. C. D.3.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.4.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.25.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.6.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.407.函數的圖象大致為()A. B.C. D.8.若復數,其中為虛數單位,則下列結論正確的是()A.的虛部為 B. C.的共軛復數為 D.為純虛數9.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.210.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.11.若為虛數單位,則復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,在區(qū)間上隨機取一個數,則使得≥0的概率為.14.圓關于直線的對稱圓的方程為_____.15.已知,則__________.16.函數的定義域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.18.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區(qū)間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.19.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.20.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.21.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.22.(10分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】
根據程序框圖寫出幾次循環(huán)的結果,直到輸出結果是8時.【題目詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【答案點睛】此題考查算法程序框圖,根據循環(huán)條件依次寫出每次循環(huán)結果即可解決,屬于簡單題目.2.D【答案解析】
設,,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據,得到方程,即可求出參數的值;【題目詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【答案點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.3.B【答案解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【題目詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【答案點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養(yǎng).4.B【答案解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【題目詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【答案點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.5.B【答案解析】
首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【題目詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【答案點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.6.D【答案解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=407.A【答案解析】
根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【題目詳解】因為,所以是偶函數,排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【答案點睛】本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區(qū)間和極值,屬于中檔題.8.D【答案解析】
將復數整理為的形式,分別判斷四個選項即可得到結果.【題目詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數,正確本題正確選項:【答案點睛】本題考查復數的模長、實部與虛部、共軛復數、復數的分類的知識,屬于基礎題.9.C【答案解析】
首先判斷出是周期為的周期函數,由此求得所求表達式的值.【題目詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【答案點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.10.B【答案解析】
利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【題目詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【答案點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數在處有意義時,的情況.11.D【答案解析】
根據復數的運算,化簡得到,再結合復數的表示,即可求解,得到答案.【題目詳解】由題意,根據復數的運算,可得,所對應的點為位于第四象限.故選D.【答案點睛】本題主要考查了復數的運算,以及復數的幾何意義,其中解答中熟記復數的運算法則,準確化簡復數為代數形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12.D【答案解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.14.【答案解析】
求出圓心關于直線的對稱點,即可得解.【題目詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【答案點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.15.【答案解析】
首先利用,將其兩邊同時平方,利用同角三角函數關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結果.【題目詳解】因為,所以,即,所以,故答案是.【答案點睛】該題考查的是有關三角函數化簡求值問題,涉及到的知識點有同角三角函數關系式,倍角公式,誘導公式,屬于簡單題目.16.【答案解析】
根據函數成立的條件列不等式組,求解即可得定義域.【題目詳解】解:要使函數有意義,則,即.則定義域為:.故答案為:【答案點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【答案解析】
(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【題目詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【答案點睛】本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.18.(Ⅰ)函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【答案解析】
(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)利用導數可得在區(qū)間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區(qū)間,進而求得最大值.【題目詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.【答案點睛】本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.19.(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)由正弦定理邊化角,再結合轉化即可求解;(Ⅱ)可設,由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進而得解【題目詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【答案點睛】本題考查正弦定理和余弦定理的綜合運用,屬于中檔題20.(1)見解析;(2)【答案解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【題目詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【答案點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.21.(1);(2).【答案解析】
(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【題目詳解】(1)由題設得.由正弦定理得∵∴,所以或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電工程考試高效答題技巧與試題及答案
- 西方國家的文化政策與全球治理試題及答案
- 公共政策中的社區(qū)參與的重要性試題及答案
- 網絡工程師復習重點試題及答案合集
- 及時反饋的軟件設計師考試試題及答案
- 2025年初級銀行從業(yè)資格(銀行管理)考試練習題庫
- 機電工程監(jiān)測技術試題及答案
- 跨文化團隊的挑戰(zhàn)與機遇及試題答案
- 引導機電工程考試思考的實踐操作試題及答案
- 西方政治制度下的社會文化認同與政策動向分析試題及答案
- 【課件】2025屆高考英語最后一課課件
- 【MOOC】斷層影像解剖學-山東大學 中國大學慕課MOOC答案
- 社區(qū)工作者經典備考題庫(必背300題)
- 中職《PLC技術與應用》期末考試試卷
- 安全生產標準化管理體系
- QCT302023年機動車用電喇叭技術條件
- 中醫(yī)內科學方劑+歌訣
- 分形理論幻燈片
- 汽車租賃后續(xù)服務承諾
- 高風險作業(yè)檢查表
- 外傷性截癱課件
評論
0/150
提交評論