現代控制理論第二章_第1頁
現代控制理論第二章_第2頁
現代控制理論第二章_第3頁
現代控制理論第二章_第4頁
現代控制理論第二章_第5頁
已閱讀5頁,還剩32頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

§2-1線性定常齊次狀態方程的解(自由解

若初始時刻t0x(t0)x0,則式(2-1) x(t)eA(tt0)x,t 若初始時刻從t0x(0)x0

0x(t)eAtx0

t

證:先假設式(2-1)的解x(t)為t的矢量冪級數形式,即x(t)bbtbt2btk

x(tb2bt3bt2kbtk1 代人式(2-1)xA(bbtbt2btk) 既然式(2-4)是(2-1)的解,則式(2-5)對任意時刻t都成立,故t的同次冪項的系數應bAb,b1

1A2b,b1Ab1A3b

b1 1Akb k 在式(2-4)中,令t0b0x(0)4,故得:x(t)(1At1A2t21Aktk

括號內的展開式是nn矩陣,它是一個矩陣指數函數,記為eeAt1At

A2t2

1AktkK01AktkK0 再用(tt代替(t0,即在代替tx(t)eA(tt0x 2-2矩陣指數函數——狀態轉移矩 X(teAtXX(teA(tt0 由上式可知,它反映了從初始時刻的狀態向量到任意t0或tt0

X(t0種向量變換關系。變換矩陣就是eAt,它不是常數矩陣,它的元素一般是時間t的函數,是一個nn所以eAt也稱為狀態轉移矩陣,記為(t,(t)eAtX(0X(t的轉移矩陣,而(tt)0X(t0X(tXAXX(t(tX(0X(t(tt0X(t0,在tX(0)X10以此為初始條件,且已知(t,那么在t

X X 20X

)X11(t)X

X X 21xt00若已知

,那么t

X

)X12

)X

X X

22X(0(t1或(t2X(t1X(t2若以tt1X(t1是初始狀態從t1轉移到t2的狀態將為:X(t2)=(t2t1)X(t1將式(2-8)x(t2)(t2t1)(t1

x(0x(t1x(t2比較式(2-9)和(2-11)可知轉移矩陣(或矩陣指數)

)

或eA(t2t1e

e

x(t0,求得任意時刻t的狀)(t)()(t或eAte

eA(t

這就是組合性質,即從0,0t(t0)[0()][t()](t(tt)I或eA(tt)

它意味著狀態矢量從時刻t又轉移到時刻t,顯然狀態矢量是不變的[(t)]1(t或[eAt]1e

轉移矩陣的逆意味著時間的逆轉,利用這個性質,可以在已知x(t)的情況下求出小于時刻tx(t0(t0t(tA(t(tA

Ae

eAt

即(t)或eAt矩陣與A矩陣是可以交換的對于方陣AB(nn)ABBAeAte

eAB)tABBAeAte

eAB)t

0 AA=∧=

eAt(t)

n0 t enAT1ATeAt(t)T

0T

ent0A=∧=

0n0eAt1At1A2t21Antn X(t)(tt)X(t)xxtT1ITT1ATt1T1A2Tt2 1T1AnTtn 1211

12t

0 2! 1 1

2t2

2! I

t

n 0

12t21t12t2 1

2! 2!

n!

12t

12t2 22

21 2 1t12t2 1ntn

0

2!

n!

ent

entT[T1eAtT]T1

0

T T1T T ent

ent A 0 AJ

, 1

n1101 0101 00 00 eJt(t)et eAtIAt1At)21At)3

t

A

t

12!

1

(n1(n1t

(nt10t1

0 11

0 0

01 01 A

1

0

設t(n1)!t(n1)!2 (n1)!t1t

0

1t 1t

(n

1 1 t1(n1t1t1

(n2)! et

(n et 1ABBA的條件下eAB)teAteBt X 解:

0

0 00 0 000

ABBA 0

0又知,eAt ,注:A e

eBtIBt1B2t2

1 0

1 3

1 0 t

t2

t3

t4 0

2! 2

3! 0

4! 4112t214t4 t13t3

sin

sintcost t 3t3 2t2 4t4

sinxx 注:級數

cosx e

0

sint(t)eAteBt etsin costet etsint

t

sintetsin etcost sin cost 例2:已知X 解 sIAs

0 s

s s

s

s

(s)2

(s)22sI

(s)22 s s (s)22 (s)22 eatsin(sa)2k

s eatcos(sa)2k 1

1

et etsint

t

sint(t)

(sI

etsin etcost sin cost 一.(t)或eAt的計算(狀態轉移矩陣的計算根據(t)或eAt的定義直接計eAt1At1A2t21Antn1:A

1解 eAt1At1A2t

Aktk k 1 12teAt t

13 3

3 1 1 1t 13 1 3t 3 32 33! 0 1 3t 3 1 3t 72 7 36 0 1

13t 1

76

3t 72

5t t3t27t3t3t27t37

22t3t2

t32612613t t2 t3 AT1ATTA變換為對角線矩陣的變換陣。eAtTetT2:AIA2

1

23212

1,

1TP P P12,APP01 P 1 22 1P11P11

P21,

P11

2,則P

3

P

P

1 1

21

21

1P122P12

P22,

1

3

2P

P

2 2

22

22

1

2 1TP P ,T1 2

1 1 1

1 1 0 2

2

3

20T1AT,1, 2

1

0

1 1

0 1eAtTetT1

2 2

2

e2t

2

e2t

1 2et

ete2t

2t

2

2t

P56JT1AT,根據式(2-18)eAtTeJtT3:A

1;求e 1 解:IA

1

1,

2,J

00

0p11

p11

1p21

21

p31p21p11,p31p21,2p115p214p31

P1P

1P254PP1,所以P

21P21P2AP2p12

0p12

p11

p-

1

=22

22

21

p12p221,p22p321,p322p125p224p32取 0,

1,

2

32P23P3p13

0p132

1p23 23

2p13p23,2p23p33,p332p135p234 1,

2,

4

T

2,det1

24+0+2-1-0-4=1,adjT

2

1T1

1

1=

1

1

1

1

0 JT1AT=

11

1

2

1

2= ∴eJt

et

000e2t

2

s 0eAt

0 0 s 0 s

ssIA1 s 0 s

(s (s (s1)(s

s

(s1)(s (s1)2(s2)2 (s (s1)2 (s2)1sIA1

0 0

e2tJ

e

還需求出變換矩陣T和T1eAtTeJtT

0p12 P

P,

1

1

22

22

22

p12p22 p2p5p4 當 1時,

0,

1

0

TT012,1=531At121 t2(e2tet利用拉氏反變換法求eeAt(t)L1[(sIA)1

X(tAX(tX(0)X00sX(sX(0AX(s)(sIAX(s)X(0)X,左乘(sIA1000X(ssIA)1 X(tL1[(sIA)100

X(t)eAt

,t

eAtL1[(sIA102-4:A0

試用拉氏反變換法求e解 sIA

1s(s3)sssI(sIA)sI

s(s1)(s (s (s1)(s (s2e

e

e

e eAtL1[sIA]1

2e

e

2t應用-定理求e(1)f(A)An An1aAaI An An1 An2 aAaIAn1

AI 同 An1AAn An An1aA2a1100 1100

An1

An2aA

An1aA2a

)An1

)An2

)A

n1a0以此類推An1An2都可以

An1,

AI在定義式(2-7)中eAt1At

A2t2

Aktk,用(1)An次及neAt1At

A2t2

(n

An1tn1

Antn

(n

An1tn1

(t)An1

(t)An2a(t)A

1010已知狀態轉移矩陣(t)的情況下,如何確定系統矩陣A,方法有A證明:因為(t)A(t)A(t)(t)(t)1(t),1(t)1(t),故有A(t)(t)A證明:因為(t)eAt,當t0A(tt0由上式可以求出矩陣A例:已知系統的狀態轉移矩陣,試求系統矩陣A

(t) (1

(12t)e2t

A(t)(t) (4 (48t)e2t (1

(12t)e2t

A

(4 (48t)e2t t

(1

t

s

s

(sIA)1L(t)

s (s (s (s (s2)2 s4 (s s (s2)2 (s (s2)2 s s 0

(sIA)

s 4 0 (s

(s2)2

s

s

s4 (s (s2)2 A 12-5:A

求eAt表示式中的ai(tAIA2

3 定理有A23A2I A23AA3

A(3A2I)

2A3(3A2I)2A7AA4AA3A(7A6I)7A26A7(3A2I)6A15A…A22eAt1At1A2t21A3t31A4t4 1At1(3A2I)t21(7A6I)t31(15A14I)t4 (t3t27t315t4 )A(1t2t314t4 a1(t)Aa0∴a(t)=t3t27t315t4,a(t)=1t2t314t4 ai(t上例求ai(t只是對(2-22)加深理解,并說明ai是時間t的函數,實際上不宜計算ai(t,一則是得不到ai(t)的解析表達式,二則是當維數較高時,將造成計算上的繁瑣。下面給出計算ai(t)的一般公式。A0a(t)0

n11e1t1a1(t)1

n1

e2t

n n

n1

t

AA是可以互換的,因此也23,從而有:a(t)a

(t)n1

01a(t)a(t) (t)n101 a(t)a(t) (t)n1 上式對a0

a2

23A的特征值均相同,為1時,

t

1

e1

(t)

(n

(n1

n2

(t)

(n

e1 =

(n1)(n2)n3

aa

(n

1t2e 1 11 1

證明:同上(P60)a(t)a(t)a

(t)n1

上式對1求導數,有a(t)2a

(n

(t)n2 再對1求導數有

(t)

(n1)(n

(t)n3t211(n (t)t由上面的n個方程對ai(t)求解,即得式(2-24A 1

eAt2-

3, 解:已知1=-1,2=-2,為互異根a

1e1t 11et

1et 2ete2t101

2

e2t

e2t

1e2t ete2t (2ete2t) 2et 2et2et 2et

2e2t2et

2

A,(t) tA

2

et 12

2e2tet

t

2-7:A

t10

2 14 1,求eAt

1解 IA 12132重根部分按式(2-24)處理,非重根部分按式(2-23)a0 a 1

1 1

213213

2

1a

et t

2

adjA

2

2e

10 10

1323

1

12

e eAta(t)Ia(t)Aa(t

1 4

2tet 3tet2et tetete2t2(e2tettet 3tet5et tet2et2e2t 3tet8et tet3et4e2t

2tete2t,

3tet2et2e2t,

tetet1212XAXY(t)CX

d[eAtX(t)]eAtBu(t)d(eAtX

eAt

de

X

At

eAt

e

對上式從0到t積分dtd

teABu(0 t eAX()

eABu(0teAtX(t)X(0)eABu(0teAtX(t)X(0)eABu(0t兩邊同乘eAt,即eAte

1X(t)eAtX(0eA(tBu()d,而e0

(t)tX(t)(t)X(0)(t)Bu(0如果從t0tX(t)(tt0)X(t0)

(t)Bu(

x1

1x10u,Y 0x

3x

2 t

2

eax0X(t)eAt0

eA(tBu()d0

eaxdx C先求(t,已知(t)eAt

2et

et 2et

et2e2tu(t)1(tB0X(0)x1

x tX(t)(t)X(0)(t)Bu(02et

et

x(0)

(t)Bu(02et et2e2tx20 (2ete2t)x(0)(ete2t)x

t

2e(t)e2(t

e(t)e2(t

0(2et2e2t)x(0)(et2e2t)x 0

2e(t)2e2(t

e(t)2e2(t) (2ete2t)x(0)(ete2t)x

t

e(t)e2(t)

(2et2e2t)x(0)(et2e2 x(0)0

e(t)2e2(t)t e(t)de2(t)d

12t

x(t)

et

1 1

0 x2 t

t e(t)d2e2(t)d

0y(t)CX(t)

0x1(t)x(t)

1et1x x 脈沖響應時;當u(tK(tX(0X時X(teAtXeAt 階躍響應時;當u(tK1(tX(0X時X(teAtXA1(eAt 斜坡響應時;當u(tKt1(tX(0X時X(teAtX[A2eAt1 K——與u(tu(t)

tt

X(0) te(t)e2(t X(t)(t)B

e(t)2e2(t)0t=

te(t)d0

0 e2(t

e(t)d

2e2(t)d et=

ede2t0

e2d

e注 xeaxdxe

(ax1)

aet

ed

2t0

e2de te =

(1)t

2t4

(21) 00

te(t

t

00et00

(1)t

2t4

(21)t 00000e te

(t1)

[4

(2t1)1(01)]4=(t1)et(1)2e2t

4

(2t1)

1(0 1t3

e2tet

X(t)=

t x1(t)

31t

1xy(t)CX(t)x

0 作業:2.4(2,2.5(2)(4),2.6附:伴隨方前面討論的是系統自由響應問題,假定初始條件已知X(0)(t0。現在是某一時刻tX(t)(t)X X(0)1(t)X設

T1

T(t)1(t)對t取導(t)

T(t)1(t)T(t)1(t)X(t)(t)X(t) [T(t)T(t)A](t)若(t)0T(t)T(t)(t)AT

乘法定理AT]T

(

BT

Z(tAZ(t,上式中的(t

Z(t)(t)Z

1(t))33求得系統的轉移矩陣(t1tX(0Z(tATZ(tX33

例:

A 1

Z(t)

(t)L1{[sIA]1}

2et 2et2e2t=et e2t

et

et2e2t1(t)T

2et

et 2etX(0)1(t)X

et2e2ts

s 1

(s1)(s (s1)(s2)L1{

}L1 (s1)(s (s1)(s2)

(利用部分分式解2

22

t t

2tL1s

s

s

s2

1s1

s

1s1

2s2

et

et2e2t= s =1(s1)(s

s(s(s3)(s(s1)(s

s

s

2a2

(s(s(s

11s∴(s1)(s2)

s1

s2 =

(s1)(s s

s2(s2(s(s1)(s

s1

b2

2(s2(s(s1)(s

21 (s1)(s

2s1

s3 (s1)(s

s

sc1c2

s1(s1(s(s1)(s1(s2)

111∴(s1)(s2)

s1

1s (s1)(sd

ss(ss(s(s1)(s

ds

s1

1d2

s(s2)s(s2)(s1)(s2)

21 (s1)(s

1s1

s§2-4狀態轉移矩陣的性一.討論狀態轉移矩陣的性質就是討論矩陣指數eAt的性 (t2t1)(t1t0)(t2t0 (tt)(tt)eA(t2t1eA(t1 1(t)

A(t2t1t1t0)=eA(t2t0)=(tt(t)eAt,(t)e (t,t)1(t,

eAt(eAt)1

1(0)

t,te0(t,t0)A(t)(t,t0

XAX設t00X(0)

yX(s)(sIA)1X(0)(sI-A)1Bu(s)(sIA)1XsIA)1But注:x(teA(tt0)eA(tBu(

x(t)ty(t)CeA(tBud(拉氏反變換得出)輸入為(ty的輸出為系統的脈沖響應h(t0

h(t)(t)=

h(t)=0

(t)h(t)d=(t)h(t)n1h(iT)T(tiT n當n0 n

i1,2,3,n1∴h(t)CeAt h(t)L1[C(sIA)1f(t在處連續,如果有另一個函數(t(t)(t)=lim0

tt

(t)df(t)(t)d

t[t1,t2則稱(t為Dalta1,故又稱為單位系統在t0時刻的r個輸入均為單位脈沖函數(tt0,即Ui(t)ei(tt0

ei1第ii=1,2…,X(t00時,在tt0H(tX(t)(tt0)X(t0)

t(t)Bu(X(t00D0

X(t)(t)Bu(0 Y(t)C(t)Bu()d=C(t)Bei(tt0)d=C(tt0

hi(tt0令t

h(t)C(t

t

thi(t當t

hi(t)系統t時刻的輸出僅與t以前的輸入有關,而不取決于t以后的輸入H(t)=h1(t

h2(t

hr(t

C(t

C(t)Ber=C(tH(t)

er]

C(t

tt設0CeAt

tH(t)

t令t0

Y(t)CeAtX(t0)H(t)u((t0)(t)etY(t)H(t)u(H(t)ceAtk1u(t)

2

K是與u(tk kX(t)X(t)eAtXeAt0Y(t)CeAttX(t)eAt Y(t)CeAtX0CH(t)()KdCH(tX(t)eAt0tX(t)eAtX0eA(t)Bu(tX00X(t)eA(tBu()deAtB(t)KeAt0rr

u(t)K(t)

tt

K

kT與u Y(t)CeAtX0H(t)u()dCeAtX0[CeA(t)BK tCeAtX0CeAteA0te0t

AdIt

1At2

1A2t3 AA1

eAdA1[At0

A2t2

A3t3A1[(IAt1A2t21A3t3)I A1eAt0A1(eAtIX00

Y(t)CeAteA0

CeAt[A1(eAtI[CeAtA1eAtCeAtCA1[IeAt]BKCA1[eAtI0或 X(t)eAtXA1(eAtI0Y

u(t)

ttK

k

X(t)XrtrY(t)C(tt0)X(t0)C(t)Bu(tCeA(tt0)X(t0)H(t)u(tCeAtX0H(t)u(0tCeAtX0CeA(t)Bu(0tCeAtX0CeAteA0

eAteABKdeAt(IA A22

eAt t

1 1 33244A3t5 1A2t2)A21A2t2A3t33A4t44

At若A2存在,將上式改寫teAteABKd(IAt0

A5t5A2(1A2t21A3t31A4t4)BKA2(eAtI 0Y(t)CeAtXCA2(eAtI000X(t)eAtXA2(eAtIAt)BKeAtX[A2(eAt1)00

u(t)2

t

tK

k

X(0)r0Y(t)CeAtr0

CA3(eAtIAt1A2t22假 H(t)CeAtH(t000H(s)LH(t)H(t)estdt[CeAtBestdt]C[eAtBestdt]C(sIA)1B000L(eAt)eAtestdt(sI0

即eAtL1[(sI1:

X

1X

y

eAt

2et

1et12et

et2e2t

At1

2et

et

11 11

112et

et2e2t=2ete2t2et

ete2tet2e2t=e2t

e2t2e2t=e2t2e2te2t

=T

1C~CTC

1

1

3B B

11AT1AT

0~e

0

作業 e2t ~

~

e

03 3

H CeAt 1

e2t H(t)h(t)

e2t

2x10(t

y

0x1

H(t

3x

2x2

2

2

2

2(1e3teAt(t)L1[(sIA)1]L1

L1

0s(s3) 0 s

s3

0

3tH(t)CeAtB

3

030

3(1 2

§2-5離散時間系統狀態方程的先介紹用遞推法(迭代法X(k1)GX(k)

X(k Xk這是一階矩陣差分方程的解, 一差分方X(k1)0.2X(k) k=0,1,2,…,X(0)0,u(k)k

X(1)0.2X(0)2u(0)21k

X(2)0.2X(1)2u(1)0.222k

X(3)0.2X(2)2u(2)0.21.6210.322k

X(4)0.2X(3)2u(3)0.21.68210.3362這種算法適用于計算機計算,應該X(k)已知u(k)已知

X(k1)GX(k)y(k1)CX 當k0當k X(1)GX(0)當k X(2)GX(1)Hu(1)G2X(0)GHu(0)當k X(3)GX(2)Hu(2)G3X(0)G2Hu(0)GHu(1)從k1

X(k)GX(k1)Hu(k1)GkX(0)Gk1Hu(0)GHu(k2)Hu(kkX(k)GkX(0) GkJ1Hu(j

(k1,2,3,)(j1,2,3,,k1)很明顯,X(kX(0ujj1,2,3,k1k個時刻的狀態,只與此采樣時刻以前的輸入采樣X(k1)GXF(k)y(k)CTX(k)X

GG2

0 0

u(0)u(1)注:用矢量矩陣形式表示

X(0)

X k

k

k

G

Hu(kX1(k1)X2(k)X2(k1)X3(k)…Xn1(k1)Xn(k)Xn(k1)a0X1(k)a1X2(k)an1Xn(k)y(k)X1(k)

hn1

n2X(k1) X(k)u(k0001 0001 h1

an1

y(k) hn

0X(k)hn1bn1

h0b0a0bna1bn1an1b1b00式中Gk(或Gkh)相當于連續系統中的(t)eAt(或(tt)eA(tt0)0陣(t)ek,它是滿足(k1)G(k),(0)I的唯一的矩陣。利用狀態轉移矩陣(k將前式可寫成kX(k)(k)X(0) (kj1)Hu(j

性質有1(k)(k)k X(k)(k)X(0) (j)Hu(kjj

ky(k)C(k)X(0) (kj1)Hu(jk y(k)C(k)X(0) (j)Hu(kjjkh

(h)[(GkhkX(k)GkhX(h) Gkj1Hu(j或z

kX(k)(kh)X(h) (kj1)Hu(jX(k1)GX(k)

zzX(z)zX(0)GX(z)(zIG)X(z)zX(0)X(z)(zIG)1zX(0)(zIG)1

zXX(k)L1[(zIG)1zX(0)]L1[(zIG)1(k)X(0)GkX(0)L1[(zIG)1zXGk(k)L1[(zIG)1k(kj1)Hu(j)L1[(zIG)1jk X(k)GkX(0) Gkj1Hu(j要獲得采樣瞬時之間的狀態和輸出,只需在此采樣周期內,即kTtk

內,令tkTT(k)T,(0X(k)T(T)X(kT)

(T)dHu(kTk首先, Gkj1Hu(j)的z變換,kjk

k

k[Gkj1Hu(j)]

Gkj1Hu(j)zk

zkjGkj1Hu(j)zj

k

j

k

j[Gk1Hu(0)zkGk2Hu(1)zkGk3Hu(2)zkk(Hz1GHz2G2Hz3)[u(0)u(1)z1u(2)z2(IGz1G2z2)Hz1[u(k)zkk(IGz1)1Hz1u(k)zk

(IGz1)1z1[zI[zIG]1k∴L1[zIG]1Hu(z)] Gkj1Hu(j

k0GkX(k1)GX(k

G 1

H

1當k1

u(k)1X(k

X(k)(k)X(0)L1[zIG]1u(z)

z

X(0)1

u(k)

(k0

11

z 先求:(k)L1[(zIG)1z]L1

zL1

z 1

(z0.2)(z0.8)

z(k)L1zz

z z

z3

z

z

z0.2

z 1 4(0.2)k

5(0.2)k5(0.8)k(k)30.8(0.2)k

(0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論