2023學年四川省遂寧市遂寧二中高考數學五模試卷(含答案解析)_第1頁
2023學年四川省遂寧市遂寧二中高考數學五模試卷(含答案解析)_第2頁
2023學年四川省遂寧市遂寧二中高考數學五模試卷(含答案解析)_第3頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在上單調遞減的充要條件是()A. B. C. D.2.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.3.根據黨中央關于“精準”脫貧的要求,我市某農業經濟部門派四位專家對三個縣區進行調研,每個縣區至少派一位專家,則甲,乙兩位專家派遣至同一縣區的概率為()A. B. C. D.4.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.5.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.6.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.7.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.8.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或9.已知f(x)=是定義在R上的奇函數,則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)10.已知向量,則向量在向量方向上的投影為()A. B. C. D.11.A. B. C. D.12.執行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.若變量,滿足約束條件,則的最大值為__________.16.函數的圖象在處的切線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論函數單調性;(2)當時,求證:.18.(12分)已知正數x,y,z滿足xyzt(t為常數),且的最小值為,求實數t的值.19.(12分)的內角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.20.(12分)已知變換將平面上的點,分別變換為點,.設變換對應的矩陣為.(1)求矩陣;(2)求矩陣的特征值.21.(12分)平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.22.(10分)已知正項數列的前項和.(1)若數列為等比數列,求數列的公比的值;(2)設正項數列的前項和為,若,且.①求數列的通項公式;②求證:.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【題目詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【答案點睛】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.2.B【答案解析】

根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【題目詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【答案點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.3.A【答案解析】

每個縣區至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區的概率.【題目詳解】派四位專家對三個縣區進行調研,每個縣區至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區包含的基本事件個數:甲,乙兩位專家派遣至同一縣區的概率為:本題正確選項:【答案點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.4.B【答案解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【題目詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【答案點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.5.D【答案解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【題目詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【答案點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.6.B【答案解析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【題目詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【答案點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.7.D【答案解析】

設,利用余弦定理,結合雙曲線的定義進行求解即可.【題目詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【答案點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數學運算能力.8.D【答案解析】

根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【題目詳解】因為,所以當,解得

,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【答案點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.9.C【答案解析】

由奇函數的性質可得,進而可知在R上為增函數,轉化條件得,解一元二次不等式即可得解.【題目詳解】因為是定義在R上的奇函數,所以,即,解得,即,易知在R上為增函數.又,所以,解得.故選:C.【答案點睛】本題考查了函數單調性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.10.A【答案解析】

投影即為,利用數量積運算即可得到結論.【題目詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【答案點睛】本題主要考察了向量的數量積運算,難度不大,屬于基礎題.11.A【答案解析】

直接利用復數代數形式的乘除運算化簡得答案.【題目詳解】本題正確選項:【答案點睛】本題考查復數代數形式的乘除運算,是基礎的計算題.12.B【答案解析】

由題意,框圖的作用是求分段函數的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【答案點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【題目詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【答案點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.14.π.【答案解析】

設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【題目詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構成的圖形的面積為π×O【答案點睛】本題考查三棱錐的外接球的相關問題,根據立體幾何中的線段關系求動點的軌跡,屬于中檔題.15.【答案解析】

根據約束條件可以畫出可行域,從而將問題轉化為直線在軸截距最大的問題的求解,通過數形結合的方式可確定過時,取最大值,代入可求得結果.【題目詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【答案點睛】本題考查線性規劃中最值問題的求解,關鍵是能夠將問題轉化為直線在軸截距的最值的求解問題,通過數形結合的方式可求得結果.16.【答案解析】

利用導數的幾何意義,對求導后在計算在處導函數的值,再利用點斜式列出方程化簡即可.【題目詳解】,則切線的斜率為.又,所以函數的圖象在處的切線方程為,即.故答案為:【答案點睛】本題主要考查了根據導數的幾何意義求解函數在某點處的切線方程問題,需要注意求導法則與計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見解析【答案解析】

(1)根據的導函數進行分類討論單調性(2)欲證,只需證,構造函數,證明,這時需研究的單調性,求其最大值即可【題目詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【答案點睛】考查求函數單調性的方法和用函數的最值證明不等式的方法,難題.18.t=1【答案解析】

把變形為結合基本不等式進行求解.【題目詳解】因為即,當且僅當,,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【答案點睛】本題主要考查基本不等式的應用,利用基本不等式求解最值時要注意轉化為適用形式,同時要關注不等號是否成立,側重考查數學運算的核心素養.19.(1);(2).【答案解析】

(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【題目詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【答案點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于常考題型.20.(1)(2)1或6【答案解析】

(1)設,根據變換可得關于的方程,解方程即可得到答案;(2)求出特征多項式,再解方程,即可得答案;【題目詳解】(1)設,則,,即,解得,則.(2)設矩陣的特征多項式為,可得,令,可得或.【答案點睛】本題考查矩陣的求解、矩陣的特征值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.21.(1).(2)【答案解析】

(1)根據題意代入公式化簡即可得到.(2)聯立極坐標方程通過極坐標的幾何意義求解,再求點到直線的距離即可算出三角形面積.【題目詳解】解:(1)曲線,即.∴.曲線的極坐標方程為.直線的極坐標方程為,即,∴直線的直角坐標方程為.(2)設,,∴,解得.又,∴(舍去).∴.點到直線的距離為,∴的面積為.【答案點睛】此題考查參數方程,極坐標,直角坐標之間相互轉化,注意參數方程只能先轉化為直角坐標再轉化為極坐標,屬于較易題目.22.(1);(2)①;②詳見解析.【答案解析】

(1)依題意可表示,,相減得,由等比數列通項公式轉化為首項與公比,解得答案,并由其都是正項數列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關系,由等差數列的通項公式即可得答案;②由已知關系,表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論