




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數為()A.80° B.70° C.60° D.40°2.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y3.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.44.若2m﹣n=6,則代數式m-n+1的值為()A.1 B.2 C.3 D.45.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.6.若一組數據1、、2、3、4的平均數與中位數相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.57.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π8.一枚質地均勻的骰子,骰子的六個面上分別刻有1到6的點數,投擲這樣的骰子一次,向上一面點數是偶數的結果有()A.1種 B.2種 C.3種 D.6種9.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數為()A.40° B.45° C.50° D.55°10.已知二次函數的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<011.舌尖上的浪費讓人觸目驚心,據統計中國每年浪費的食物總量折合糧食約499.5億千克,這個數用科學記數法應表示為()A.4.995×1011 B.49.95×1010C.0.4995×1011 D.4.995×101012.如圖,△ABC的內切圓⊙O與AB,BC,CA分別相切于點D,E,F,且AD=2,BC=5,則△ABC的周長為()A.16 B.14 C.12 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,AB=,E是BC的中點,AE⊥BD于點F,則CF的長是_________.14.如果實數x、y滿足方程組,求代數式(+2)÷.15.若關于x的方程kx2+2x﹣1=0有實數根,則k的取值范圍是_____.16.用黑白兩種顏色的正六邊形地面磚按如圖所示的規律,拼成若干圖案:第4個圖案有白色地面磚______塊;第n個圖案有白色地面磚______塊.17.據報道,截止2018年2月,我國在澳大利亞的留學生已經達到17.3萬人,將17.3萬用科學記數法表示為__________.18.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.20.(6分)已知a2+2a=9,求的值.21.(6分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉,得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.22.(8分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.23.(8分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點A順時針旋轉,把AC邊繞點A逆時針旋轉,得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補三角形”,△AB'C′的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當△ABC是任意三角形時,猜想AD與BC的數量關系,并證明你的猜想;(拓展應用)(3)如圖1.點A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點P是四邊形ABCD內一點,且△APD是△BPC的“旋補三角形”,點P是“旋補中心”,請確定點P的位置(要求尺規作圖,不寫作法,保留作圖痕跡),并求BC的長.24.(10分)已知是的函數,自變量的取值范圍是的全體實數,如表是與的幾組對應值.小華根據學習函數的經驗,利用上述表格所反映出的與之間的變化規律,對該函數的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:(1)從表格中讀出,當自變量是﹣2時,函數值是;(2)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;(3)在畫出的函數圖象上標出時所對應的點,并寫出.(4)結合函數的圖象,寫出該函數的一條性質:.25.(10分)發現如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.26.(12分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發現該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數為_______人,扇形統計圖中D類所對應扇形的圓心角為_____度,請補全條形統計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.27.(12分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據平行線的性質得到根據BE平分∠ABD,即可求出∠1的度數.【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.2、C【解析】
原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.3、B【解析】
圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.4、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數式,解題的關鍵是掌握整體代入法.5、D【解析】根據“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.6、C【解析】
解:這組數據1、a、2、1、4的平均數為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數據從小到大的順序排列后為a,1,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數據從小到大的順序排列后為1,a,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數據從小到大的順序排列后1,2,a,1,4,中位數是a,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數據從小到大的順序排列后為1,2,1,a,4,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數據從小到大的順序排列為1,2,1,4,a,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點睛】本題考查中位數;算術平均數.7、D【解析】
根據等邊三角形的性質得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【點睛】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關鍵.8、C【解析】試題分析:一枚質地均勻的正方體骰子的六個面上分別刻有1到6的點數,擲一次這枚骰子,向上的一面的點數為偶數的有3種情況,故選C.考點:正方體相對兩個面上的文字.9、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質10、B【解析】
根據拋物線的開口方向確定a,根據拋物線與y軸的交點確定c,根據對稱軸確定b,根據拋物線與x軸的交點確定b2-4ac,根據x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.11、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】將499.5億用科學記數法表示為:4.995×1.
故選D.【點睛】此題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、B【解析】
根據切線長定理進行求解即可.【詳解】∵△ABC的內切圓⊙O與AB,BC,CA分別相切于點D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【點睛】本題考查了三角形的內切圓以及切線長定理,熟練掌握切線長定理是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點,過F作FG⊥BC于G,故答案為14、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.15、k≥-1【解析】
首先討論當時,方程是一元一次方程,有實數根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.16、18塊(4n+2)塊.【解析】
由已知圖形可以發現:前三個圖形中白色地磚的塊數分別為:6,10,14,所以可以發現每一個圖形都比它前一個圖形多4個白色地磚,所以可以得到第n個圖案有白色地面磚(4n+2)塊.【詳解】解:第1個圖有白色塊4+2,第2圖有4×2+2,第3個圖有4×3+2,所以第4個圖應該有4×4+2=18塊,第n個圖應該有(4n+2)塊.【點睛】此題考查了平面圖形,主要培養學生的觀察能力和空間想象能力.17、1.73×1.【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將17.3萬用科學記數法表示為1.73×1.故答案為1.73×1.【點睛】本題考查了正整數指數科學計數法,根據科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.18、15【解析】如圖,等腰△ABC的內切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內切圓的半徑為r,則.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、2【解析】
先根據0次冪的意義、絕對值的意義、二次根式的除法、負整數指數冪的意義化簡,然后進一步計算即可.【詳解】解:原式=2+2﹣+2=2﹣2+2=2.【點睛】本題考查了0次冪的意義、絕對值的意義、二次根式的除法、負整數指數冪的意義,熟練掌握各知識點是解答本題的關鍵.20、,.【解析】試題分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結果,把已知等式變形后代入計算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.21、證明見解析【解析】【分析】(1)根據菱形的性質可得BC=DC,,再根據,從而可得,繼而得=,由旋轉的性質可得=,證明≌,即可證得=;(2)根據菱形的對角線的性質可得,,從而得,由,可得,由(1)可知,可推得,即可得,問題得證.【詳解】(1)∵四邊形ABCD是菱形,∴,,∵,∴,∴,∵線段由線段繞點順時針旋轉得到,∴,在和中,,∴≌,∴;(2)∵四邊形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【點睛】本題考查了旋轉的性質、菱形的性質、全等三角形的判定與性質等,熟練掌握和應用相關的性質與定理是解題的關鍵.22、(1)見解析(2)【解析】
(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.23、(1)①2;②3;(2)AD=12【解析】
(1)①根據等邊三角形的性質可得出AB=AC=1、∠BAC=60,結合“旋補三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;
②由“旋補三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進而可得出△ABC≌△AB′C′(SAS),根據全等三角形的性質可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據平行四邊形的性質結合“旋補三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進而可證出△BAC≌△AB′E(SAS),根據全等三角形的性質可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,BA=AB∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=12∴AD=12(3)在圖1中,作AB、CD的垂直平分線,交于點P,則點P為四邊形ABCD的外接圓圓心,過點P作PF⊥BC于點F.∵PB=PC,PF⊥BC,∴PF為△PBC的中位線,∴PF=12在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF=PB∴BC=2BF=4.【點睛】本題考查了等邊三角形的性質、等腰三角形的判定與性質、平行四邊形的性質、解直角三角形、勾股定理以及全等三角形的判定與性質,解題的關鍵是:(1)①利用解含30°角的直角三角形求出AD=12AC′;②牢記直角三角形斜邊上的中線等于斜邊的一半;(2)構造平行四邊形,利用平行四邊形對角線互相平分找出AD=12AE=24、(1);(2)見解析;(3);(4)當時,隨的增大而減小.【解析】
(1)根據表中,的對應值即可得到結論;(2)按照自變量由小到大,利用平滑的曲線連結各點即可;(3)在所畫的函數圖象上找出自變量為7所對應的函數值即可;(4)利用函數圖象的圖象求解.【詳解】解:(1)當自變量是﹣2時,函數值是;故答案為:.(2)該函數的圖象如圖所示;(3)當時所對應的點如圖所示,且;故答案為:;(4)函數的性質:當時,隨的增大而減小.故答案為:當時,隨的增大而減小.【點睛】本題考查了函數值,函數的定義:對于函數概念的理解:①有兩個變量;②一個變量的數值隨著另一個變量的數值的變化而發生變化;③對于自變量的每一個確定的值,函數值有且只有一個值與之對應.25、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年和田地區大學生鄉村醫生專項計劃招聘真題
- 成都天府新區顧連禾泰康復醫院招聘筆試真題2024
- 2024年廣西英華國際職業學院輔導員考試真題
- 歷史地理角色設計師基礎知識點歸納
- 2025年二級建造師理論試題
- 參數化貝葉斯推斷在生物學和醫學中的應用-洞察闡釋
- 新醫科背景下遺傳學課程的教育需求與發展趨勢
- 中型水庫工程可行性研究報告
- 銅加工企業經營管理方案
- 2025至2030年中國電參數測量儀行業投資前景及策略咨詢報告
- 2024年工廠股權轉讓盡職調查報告3篇
- 恪守職業道德課件
- 黃色國風中國傳統配色檸檬黃介紹模板
- 2024年秋期國家開放大學《11809企業戰略管理(統設課)》期末考試題庫
- 商業綜合體場地平整施工方案
- 河南省鄭州市高新區2023-2024學年七年級下學期期末地理試卷
- 精細化工行業安全規范解析
- 健康管理中心運營與服務流程規范
- 新電氣安全規程
- GB/T 2820.7-2024往復式內燃機驅動的交流發電機組第7部分:用于技術條件和設計的技術說明
- 2024年初三數學競賽考試試題
評論
0/150
提交評論