



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則()A. B. C. D.2.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業人員中,低收入家庭共有1800戶C.在該市無業人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶3.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變4.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值5.為得到函數的圖像,只需將函數的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位6.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.27.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.8.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.9.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.10.若均為任意實數,且,則的最小值為()A. B. C. D.11.定義在上的函數滿足,則()A.-1 B.0 C.1 D.212.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a二、填空題:本題共4小題,每小題5分,共20分。13.,則f(f(2))的值為____________.14.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.15.如圖,在復平面內,復數,對應的向量分別是,,則_______.16.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.若在定義域內存在,使得成立,則稱為函數的局部對稱點.(1)若a,且a≠0,證明:函數有局部對稱點;(2)若函數在定義域內有局部對稱點,求實數c的取值范圍;(3)若函數在R上有局部對稱點,求實數m的取值范圍.18.(12分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.19.(12分)在等比數列中,已知,.設數列的前n項和為,且,(,).(1)求數列的通項公式;(2)證明:數列是等差數列;(3)是否存在等差數列,使得對任意,都有?若存在,求出所有符合題意的等差數列;若不存在,請說明理由.20.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.21.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.22.(10分)已知橢圓過點,設橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設直線交橢圓于,兩點,設直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
分別解出集合然后求并集.【題目詳解】解:,故選:D【答案點睛】考查集合的并集運算,基礎題.2.D【答案解析】
根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【題目詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【答案點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.3.C【答案解析】
根據線面平行與垂直的判定與性質逐個分析即可.【題目詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【答案點睛】本題考查直線與平面的位置關系.屬于中檔題.4.B【答案解析】
根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【題目詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【答案點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.5.D【答案解析】,所以要的函數的圖象,只需將函數的圖象向左平移個長度單位得到,故選D6.B【答案解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【題目詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【答案點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.7.B【答案解析】
利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【題目詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【答案點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區間的解析式;易錯點是忽略奇函數在處有意義時,的情況.8.D【答案解析】
設,利用余弦定理,結合雙曲線的定義進行求解即可.【題目詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【答案點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數學運算能力.9.D【答案解析】
列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【題目詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【答案點睛】本題考查了古典概率的計算,意在考查學生的應用能力.10.D【答案解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【題目詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【答案點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.11.C【答案解析】
推導出,由此能求出的值.【題目詳解】∵定義在上的函數滿足,∴,故選C.【答案點睛】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.12.C【答案解析】
兩復數相等,實部與虛部對應相等.【題目詳解】由,得,即a,b=1.∴b=9a.故選:C.【答案點睛】本題考查復數的概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【答案解析】
先求f(1),再根據f(1)值所在區間求f(f(1)).【題目詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【答案點睛】本題考查分段函數求值,考查對應性以及基本求解能力.14.【答案解析】
根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【題目詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.【答案點睛】本題主要考查等差數列、等比數列的性質,屬于基礎題.15.【答案解析】試題分析:由坐標系可知考點:復數運算16.【答案解析】
出場運動員編號相同的事件顯然有3種,計算出總的基本事件數,由古典概型概率計算公式求得答案.【題目詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數為3,出現的基本事件總數,則出場的兩名運動員編號相同的概率為.故答案為:【答案點睛】本題考查求古典概率的概率問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)(3)【答案解析】
(1)若函數有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區間上有解,則,設,利用導函數求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區間內有解,進而求解即可.【題目詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數必有局部對稱點(2)解:由題,因為函數在定義域內有局部對稱點所以在內有解,即方程在區間上有解,所以,設,則,所以令,則,當時,,故函數在區間上單調遞減,當時,,故函數在區間上單調遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變為在區間內有解,需滿足條件:,即,得【答案點睛】本題考查函數的局部對稱點的理解,利用導函數研究函數的最值問題,考查轉化思想與運算能力.18.(1)見解析,(2)【答案解析】
(1)根據等差中項的定義得,然后構造新等比數列,寫出的通項即可求(2)根據(1)的結果,分組求和即可【題目詳解】解:(1)由已知可得,即,可化為,故數列是以為首項,2為公比的等比數列.即有,所以.(2)由(1)知,數列的通項為:,故.【答案點睛】考查等差中項的定義和分組求和的方法;中檔題.19.(1)(2)見解析(3)存在唯一的等差數列,其通項公式為,滿足題設【答案解析】
(1)由,可得公比,即得;(2)由(1)和可得數列的遞推公式,即可知結果為常數,即得證;(3)由(2)可得數列的通項公式,,設出等差數列,再根據不等關系來算出的首項和公差即可.【題目詳解】(1)設等比數列的公比為q,因為,,所以,解得.所以數列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數列是以為首項,1為公差的等差數列.(3)由(2)得,所以,.假設存在等差數列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與矛盾.所以.其次證明:當時,.因為,所以在上單調遞增,所以,當時,.所以當,時,.再次證明.(iii)若時,則當,,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數列,其通項公式為,滿足題設.【答案點睛】本題考查求等比數列通項公式,證明等差數列,以及數列中的探索性問題,是一道數列綜合題,考查學生的分析,推理能力.20.(Ⅰ);(Ⅱ)最小值和最大值.【答案解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區間上的單調性,可知函數在區間上是減函數,在區間上是增函數,由此即可求得函數在閉區間上的最大值和最小值.也可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國雙缸洗衣機塑件行業市場發展前景及發展趨勢與投資戰略研究報告(2024-2030)
- 農業機械生產線項目人力資源管理分析報告
- 2025-2030年中國鹽酥雞行業深度研究分析報告
- 2024-2030年中國遼寧省農村城鎮化建設行業市場發展監測及投資潛力預測報告
- 2024-2030年中國塞棒行業市場深度分析及發展潛力預測報告
- 2025年中國交互電子白板行業發展監測及投資戰略規劃報告
- 2025年中國晶閘管整流器行業市場全景調研及投資規劃建議報告
- 2025年中國電子元器件配件市場深度分析及行業前景展望報告
- 中國農業機械市場供需預測及投資戰略研究咨詢報告
- 檢修技能培訓課件
- 2023年秋季國家開放大學-02154-數據庫應用技術期末考試題帶答案
- 山東省德州市寧津縣房地產市場報告
- 中華護理學會精神科專科護士理論考試試題
- 新能源電動汽車操作安全
- 中職生職業生涯規劃課件PPT
- PCBA元件焊點強度推力測試標準
- 《和諧與夢想》作業設計
- 北京英文介紹課件
- 可持續建筑(綠色建筑)外文翻譯文獻
- 消防維保協議書
- 醫療器械經銷商管理
評論
0/150
提交評論