2023年湖南省長沙市岳麓區湖南師大附中高三3月份模擬考試數學試題(含答案解析)_第1頁
2023年湖南省長沙市岳麓區湖南師大附中高三3月份模擬考試數學試題(含答案解析)_第2頁
2023年湖南省長沙市岳麓區湖南師大附中高三3月份模擬考試數學試題(含答案解析)_第3頁
2023年湖南省長沙市岳麓區湖南師大附中高三3月份模擬考試數學試題(含答案解析)_第4頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值2.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.3.若直線的傾斜角為,則的值為()A. B. C. D.4.如果,那么下列不等式成立的是()A. B.C. D.5.已知集合,則=A. B. C. D.6.已知我市某居民小區戶主人數和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數分別為A.240,18 B.200,20C.240,20 D.200,187.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.8.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.9.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.610.設不等式組,表示的平面區域為,在區域內任取一點,則點的坐標滿足不等式的概率為A. B.C. D.11.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.512.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數是定義在上的奇函數,且周期為,當時,,則的值為___________________.14.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.15.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.16.已知正項等比數列中,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.19.(12分)設函數,.(Ⅰ)討論的單調性;(Ⅱ)時,若,,求證:.20.(12分)已知函數,.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數的取值范圍.21.(12分)在中,角、、所對的邊分別為、、,角、、的度數成等差數列,.(1)若,求的值;(2)求的最大值.22.(10分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

采用逐一驗證法,根據線線、線面之間的關系以及四面體的體積公式,可得結果.【題目詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【答案點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質定理,中檔題.2.B【答案解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【題目詳解】解:因為,所以因為所以,即,,時故選:【答案點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.3.B【答案解析】

根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【題目詳解】由于直線的傾斜角為,所以,則故答案選B【答案點睛】本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.4.D【答案解析】

利用函數的單調性、不等式的基本性質即可得出.【題目詳解】∵,∴,,,.故選:D.【答案點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.5.C【答案解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養.采取數軸法,利用數形結合的思想解題.【題目詳解】由題意得,,則.故選C.【答案點睛】不能領會交集的含義易致誤,區分交集與并集的不同,交集取公共部分,并集包括二者部分.6.A【答案解析】

利用統計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數.【題目詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數為:故選A.【答案點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數的求法,是基礎題,解題時要認真審題,注意統計圖的性質的合理運用.7.C【答案解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.8.D【答案解析】

由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【題目詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【答案點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.9.A【答案解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【答案點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.10.A【答案解析】

畫出不等式組表示的區域,求出其面積,再得到在區域內的面積,根據幾何概型的公式,得到答案.【題目詳解】畫出所表示的區域,易知,所以的面積為,滿足不等式的點,在區域內是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【答案點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.11.B【答案解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【題目詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【答案點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.12.D【答案解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【題目詳解】解:函數是定義在上的奇函數,.由周期為,可知,,..故答案為:.【答案點睛】本題主要考查函數的基本性質,屬于基礎題.14.【答案解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.15.,【答案解析】

根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【題目詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【答案點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.16.【答案解析】

利用等比數列的通項公式將已知兩式作商,可得,再利用等比數列的性質可得,再利用等比數列的通項公式即可求解.【題目詳解】由,所以,解得.,所以,所以.故答案為:【答案點睛】本題考查了等比數列的通項公式以及等比中項,需熟記公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【答案解析】

(Ⅰ)取中點,連結、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結,,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.利用向量法能求出結果.【題目詳解】(Ⅰ)證明:取中點,連結、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結,,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,1,,,0,,,1,,,0,,,,,,0,,,,,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,設二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.【答案點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18.(1);(2).【答案解析】

(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據兩點間距離公式即可求得.【題目詳解】(1)直線的參數方程為(為參數),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【答案點睛】本題考查了參數方程與普通方程轉化,極坐標與直角坐標的轉化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.19.(1)證明見解析;(2)證明見解析.【答案解析】

(1)首先對函數求導,再根據參數的取值,討論的正負,即可求出關于的單調性即可;(2)首先通過構造新函數,討論新函數的單調性,根據新函數的單調性證明.【題目詳解】(1),令,則,令得,當時,則在單調遞減,當時,則在單調遞增,所以,當時,,即,則在上單調遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調遞增,在單調遞減;(2)證明:構造函數,,,,整理得,,(當時等號成立),所以在上單調遞增,則,所以在上單調遞增,,這里不妨設,欲證,即證由(1)知時,在上單調遞增,則需證,由已知有,只需證,即證,由在上單調遞增,且時,有,故成立,從而得證.【答案點睛】本題主要考查了導數含參分類討論單調性,借助構造函數和單調性證明不等式,屬于難題.20.(1)(2)【答案解析】

(1)當時,,當或時,,所以可轉化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數的取值范圍為.21.(1);(2).【答案解析】

(1)由角的度數成等差數列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當,即時,.【方法點睛】解三角形問題基本思想方法:從條件出發,利用正弦定理(或余弦定理)進行代換、轉化.逐步化為純粹的邊與邊或角與角的關系,即考慮如下兩條途徑:①統一成角進行判斷,常用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論