2023屆丹東市重點中學高三沖刺模擬數學試卷(含答案解析)_第1頁
2023屆丹東市重點中學高三沖刺模擬數學試卷(含答案解析)_第2頁
2023屆丹東市重點中學高三沖刺模擬數學試卷(含答案解析)_第3頁
2023屆丹東市重點中學高三沖刺模擬數學試卷(含答案解析)_第4頁
免費預覽已結束,剩余13頁可下載查看

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.2.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數是()A.12 B.16 C.20 D.83.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.4.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.5.若復數滿足,則()A. B. C.2 D.6.向量,,且,則()A. B. C. D.7.若集合,則=()A. B. C. D.8.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值9.的展開式中有理項有()A.項 B.項 C.項 D.項10.用電腦每次可以從區間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續生成3個實數,則這3個實數都小于的概率為()A. B. C. D.11.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4512.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則關于的不等式的解集為_______.14.雙曲線的焦點坐標是_______________,漸近線方程是_______________.15.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數為______.(用數字作答)16.內角,,的對邊分別為,,,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.18.(12分)已知橢圓()的半焦距為,原點到經過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.19.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.20.(12分)已知函數.其中是自然對數的底數.(1)求函數在點處的切線方程;(2)若不等式對任意的恒成立,求實數的取值范圍.21.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數方程:(為參數),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.22.(10分)設等差數列的首項為0,公差為a,;等差數列的首項為0,公差為b,.由數列和構造數表M,與數表;記數表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數t,若t不屬于數表M,則t屬于數表;(3)設,,對于整數t,t不屬于數表M,求t的最大值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

畫出圖形,以為基底將向量進行分解后可得結果.【題目詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【答案點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.2.A【答案解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【題目詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【答案點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.3.C【答案解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據此可計算出答案.【題目詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【答案點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.4.B【答案解析】

求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【題目詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【答案點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5.D【答案解析】

把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【題目詳解】解:由題意知,,,∴,故選:D.【答案點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.6.D【答案解析】

根據向量平行的坐標運算以及誘導公式,即可得出答案.【題目詳解】故選:D【答案點睛】本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.7.C【答案解析】

求出集合,然后與集合取交集即可.【題目詳解】由題意,,,則,故答案為C.【答案點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.8.B【答案解析】

根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【題目詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【答案點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.9.B【答案解析】

由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【題目詳解】,,當,,,時,為有理項,共項.故選:B.【答案點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.10.C【答案解析】

由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發生的概率計算即可.【題目詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【答案點睛】本題考查獨立事件同時發生的概率,考查學生基本的計算能力,是一道容易題.11.B【答案解析】

計算的和,然后除以,得到“5階幻方”的幻和.【題目詳解】依題意“5階幻方”的幻和為,故選B.【答案點睛】本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.12.C【答案解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【題目詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,

該幾何體的表面積:.故選C.【答案點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【題目詳解】令,易知函數為奇函數,在R上單調遞增,,即,∴∴,即x>故答案為:【答案點睛】本題考查函數的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.14.【答案解析】

通過雙曲線的標準方程,求解,,即可得到所求的結果.【題目詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【答案點睛】本題主要考查了雙曲線的簡單性質的應用,考查了運算能力,屬于容易題.15.1【答案解析】

由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數為9+9+5=1,得解.【題目詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為5,綜合①②③得:不同的選法種數為9+9+5=1,故答案為:1.【答案點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.16.【答案解析】∵,∴,即,∴,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【答案解析】

(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數為,根據的范圍可確定的范圍,結合正弦函數圖象可確定所求函數的值域.【題目詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數的值域為.【答案點睛】本題考查三角恒等變換、解三角形和三角函數性質的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數值域的求解等知識.18.(Ⅰ);(Ⅱ).【答案解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯立可求離心率;(2)由(1)設橢圓方程,再設直線方程,與橢圓方程聯立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設其直線方程為,代入(1)得.設,則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.19.(1)(2)3+3【答案解析】

(1)利用余弦的二倍角公式和同角三角函數關系式化簡整理并結合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【題目詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【答案點睛】本題考查三角函數恒等變換的應用,正弦定理,余弦定理在解三角形中的應用,考查了轉化思想,屬于中檔題.20.(1);(2).【答案解析】

(1)利用導數的幾何意義求出切線的斜率,再求出切點坐標即可得在點處的切線方程;(2)令,然后利用導數并根據a的情況研究函數的單調性和最值.【題目詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立.②若,令,∴,易知與在上單調遞減,∴在上單調遞減,,當即時,在上恒成立,∴在上單調遞減,即在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立,當即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數的取值范圍是.【答案點睛】本題主要考查導數的幾何意義及構造函數解決含參數的不等式恒成立時求參數的取值范圍問題,第二問的難點是構造函數后二次求導問題,對分類討論思想及化歸與等價轉化思想要求較高,難度較大,屬拔高題.21.(1);(2)10【答案解析】

(1)消去參數,可得曲線C的普通方程,再根據極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用根與系數的關系,求得,進而得到=,結合三角函數的性質,即可求解.【題目詳解】(1)由題意,曲線C的參數方程為,消去參數,可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標方程為.(2)將代入,得,即,所以=,其中,當時,取最大值,最大值為10.【答案點睛】本題主要考查了參數方程與普通方程,極坐標方程與直角坐標方程的互化,以及曲線的極坐標方程的應用,著重考查了運算與求解能力,屬于中檔試題.22.(1)(2)詳見解析(3)29【答案解析】

(1)將,代入,可求出,,可代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論