云南省澄江縣2023年高考數學押題試卷含解析_第1頁
云南省澄江縣2023年高考數學押題試卷含解析_第2頁
云南省澄江縣2023年高考數學押題試卷含解析_第3頁
云南省澄江縣2023年高考數學押題試卷含解析_第4頁
云南省澄江縣2023年高考數學押題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.2.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.3.設,則,則()A. B. C. D.4.已知平面向量,滿足,,且,則()A.3 B. C. D.55.設復數滿足,在復平面內對應的點為,則()A. B. C. D.6.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知向量,且,則m=()A.?8 B.?6C.6 D.88.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.39.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據此可估計陰影部分的面積是()A. B. C.10 D.10.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.11.已知全集,集合,則()A. B. C. D.12.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數是定義在上的奇函數,則的值為__________.14.設,則______.15.已知函數.若在區間上恒成立.則實數的取值范圍是__________.16.已知向量,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數,滿分100分)進行統計,請根據頻率分布表中所提供的數據,解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0018.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.19.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.20.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數方程;(2)若直線與曲線相交于,兩點,且,求實數的值.21.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.2.B【解析】

根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.3.A【解析】

根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數的運算,屬于中檔題.4.B【解析】

先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數量積及向量模的運算,是基礎題.5.B【解析】

設,根據復數的幾何意義得到、的關系式,即可得解;【詳解】解:設∵,∴,解得.故選:B【點睛】本題考查復數的幾何意義的應用,屬于基礎題.6.B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.7.D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.8.D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.9.D【解析】

直接根據幾何概型公式計算得到答案.【詳解】根據幾何概型:,故.故選:.【點睛】本題考查了根據幾何概型求面積,意在考查學生的計算能力和應用能力.10.B【解析】

根據指數函數的單調性,結合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據指數冪的大小關系判斷參數的大小,根據參數的大小判定指數冪或對數的大小關系,需要熟練掌握指數函數和對數函數的性質,結合特值法得出選項.11.D【解析】

根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.12.A【解析】

設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先利用輔助角公式將轉化成,根據函數是定義在上的奇函數得出,從而得出函數解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數,則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數的化簡,三角函數的奇偶性和三角函數求值,考查了基本知識的應用能力和計算能力,是基礎題.14.121【解析】

在所給的等式中令,,令,可得2個等式,再根據所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.15.【解析】

首先解不等式,再由在區間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數的綜合問題,屬于基礎題.16.1【解析】

根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,,;(2)【解析】

(1)根據第1組的頻數和頻率求出,根據頻數、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數,由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.18.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學生分析問題、解決問題的能力,屬于基礎題.19.(1);(2)存在,且方程為或.【解析】

(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經過橢圓的左頂點,所以可設直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點,則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點,直線的方程為或.【點睛】本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.20.(Ⅰ)(t為參數);(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標方程、參數方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數方程;第二問,直線方程與曲線方程聯立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標方程,參數方程與直角方程的相互轉化;2.直線與拋物線的位置關系.21.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.22.(1)證明見解析;(2)【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論