




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點為的三條中線的交點,且,,則的值為()A. B. C. D.2.設函數的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.3.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.4.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④5.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]6.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.7.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.8.設集合,,若,則()A. B. C. D.9.已知函數,將函數的圖象向左平移個單位長度,得到函數的圖象,若函數的圖象的一條對稱軸是,則的最小值為A. B. C. D.10.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值11.已知函數,若,且,則的取值范圍為()A. B. C. D.12.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.14.連續2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.15.已知為正實數,且,則的最小值為____________.16.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,,數列滿足.(Ⅰ)求證數列是等比數列;(Ⅱ)求數列的前項和.18.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.19.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農戶發揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經濟效益.根據資料顯示,產出的新奇水果的箱數x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數)進行模擬.(Ⅰ)若該農戶產出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據統計,10月份的連續11天中該農戶每天為甲地配送的該新奇水果的箱數的頻率分布直方圖如圖所示.(i)若從箱數在內的天數中隨機抽取2天,估計恰有1天的水果箱數在內的概率;(ⅱ)求這11天該農戶每天為甲地配送的該新奇水果的箱數的平均值.(每組用該組區間的中點值作代表)參考數據與公式:設,則0.541.81.530.45線性回歸直線中,,.21.(12分)選修4-4:坐標系與參數方程在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.(1)寫出直線的普通方程與曲線的直角坐標方程;(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.22.(10分)已知函數.(1)若曲線在處的切線為,試求實數,的值;(2)當時,若有兩個極值點,,且,,若不等式恒成立,試求實數m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.2.B【解析】
求出在的解析式,作出函數圖象,數形結合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數的范圍,考查學生數形結合的思想,是一道中檔題.3.D【解析】
根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.4.C【解析】
分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.5.D【解析】
由題意作出可行域,轉化目標函數為連接點和可行域內的點的直線斜率的倒數,數形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數可表示連接點和可行域內的點的直線斜率的倒數,由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規劃的應用,屬于基礎題.6.D【解析】
根據三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關鍵.7.B【解析】
根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.8.A【解析】
根據交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據交集的結果確定集合中含有的元素,本題屬于基礎題.9.C【解析】
將函數的圖象向左平移個單位長度,得到函數的圖象,因為函數的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.10.B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.11.A【解析】分析:作出函數的圖象,利用消元法轉化為關于的函數,構造函數求得函數的導數,利用導數研究函數的單調性與最值,即可得到結論.詳解:作出函數的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數的應用,構造新函數,求解新函數的導數,利用導數研究新函數的單調性和最值是解答本題的關鍵,著重考查了轉化與化歸的數學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.12.A【解析】
根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.14.【解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。15.【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.16.2【解析】
由題得,再根據求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數列的定義結合得出數列是等比數列(Ⅱ)數列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當時,,故.當時,,則,,數列是首項為,公比為的等比數列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數列是等比數列可利用定義法得出(Ⅱ)采用分組求和:把一個數列分成幾個可以直接求和的數列.18.(1)(2)為定值.【解析】
(1)根據題意,得出,從而得出橢圓的標準方程.(2)根據題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質,主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉化思想,是中檔題.19.(1)證明見解析(2)【解析】
(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【點睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.20.(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】
(Ⅰ)根據參考數據得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(ⅰ)首先分別計算水果箱數在和內的天數,再用編號列舉基本事件的方法求概率;(ⅱ)根據頻率分布直方圖直接計算結果.【詳解】(Ⅰ)根據題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據頻率分布直方圖,可知水果箱數在內的天數為設這兩天分別為a,b,水果箱數在內的天數為,設這四天分別為A,B,C,D,所以隨機抽取2天的基本結果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱數在內的結果為,,,,,,,,共8種,所以估計恰有1天的水果箱數在內的概率為.(ⅱ)這11天該農戶每天為甲地配送的該新奇水果的箱數的平均值為(箱).【點睛】本題考查考查回歸直線方程,統計,概率,均值的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025公司主要負責人安全培訓考試試題加答案可下載
- 2025年公司廠級員工安全培訓考試試題及完整答案【名校卷】
- 2025年廠級安全培訓考試試題附完整答案(各地真題)
- 2025年浙江省事業單位勞動合同書范本
- 2025職場維權:大學生就業招聘需審視合同細節
- 2025標準酒店員工合同范本
- 2025短期勞務合同模板
- 2025年溶栓藥項目合作計劃書
- 2025房屋租賃合同樣本下載
- 2025年度網站廣告服務合同協議范本
- GB/T 19632-2005殯葬服務、設施、用品分類與代碼
- GB/T 16457-1996超硬磨料制品切割石材和建筑物用鋸片鋼基體尺寸
- GA/T 850-2021城市道路路內停車位設置規范
- 《食品包裝學(第三版)》教學PPT課件整套電子講義
- 焊縫質量檢驗標準匯總
- 單代號網絡圖和雙代號網絡圖(習題)
- 小學班主任工作案例分析4篇(一)
- 教學改革項目立項評審指標體系參考
- 2023年貴州省遵義市中考數學試卷及答案(word版)
- 訂單評審記錄表
- 第二章導體周圍的靜電場
評論
0/150
提交評論