2023學年安徽舒城桃溪中學高三六校第一次聯考數學試卷(含解析)_第1頁
2023學年安徽舒城桃溪中學高三六校第一次聯考數學試卷(含解析)_第2頁
2023學年安徽舒城桃溪中學高三六校第一次聯考數學試卷(含解析)_第3頁
2023學年安徽舒城桃溪中學高三六校第一次聯考數學試卷(含解析)_第4頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,為中點,且,若,則()A. B. C. D.2.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.3.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.設,,則()A. B. C. D.5.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-286.若的展開式中的常數項為-12,則實數的值為()A.-2 B.-3 C.2 D.37.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.已知集合,則=A. B. C. D.10.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根11.造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人12.為得到y=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π二、填空題:本題共4小題,每小題5分,共20分。13.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現從中摸出2個球(除顏色與編號外球沒有區別),則恰好同時包含字母,的概率為________.14.在的展開式中,所有的奇數次冪項的系數和為-64,則實數的值為__________.15.設函數,則______.16.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.18.(12分)已知函數.(1)討論的單調性并指出相應單調區間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.19.(12分)在中,角的對邊分別為,已知.(1)求角的大小;(2)若,求的面積.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.21.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數據:)22.(10分)已知曲線的極坐標方程為,直線的參數方程為(為參數).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】

選取向量,為基底,由向量線性運算,求出,即可求得結果.【題目詳解】,,,,,.故選:B.【答案點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.2、C【答案解析】

根據三角函數的變換規則表示出,根據是奇函數,可得的取值,再求其最小值.【題目詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【答案點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.3、D【答案解析】

求出復數在復平面內對應的點的坐標,即可得出結論.【題目詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【答案點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.4、D【答案解析】

集合是一次不等式的解集,分別求出再求交集即可【題目詳解】,,則故選【答案點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.5、A【答案解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.6、C【答案解析】

先研究的展開式的通項,再分中,取和兩種情況求解.【題目詳解】因為的展開式的通項為,所以的展開式中的常數項為:,解得,故選:C.【答案點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.7、C【答案解析】

將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【題目詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【答案點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.8、D【答案解析】

根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【題目詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【答案點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.9、C【答案解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養.采取數軸法,利用數形結合的思想解題.【題目詳解】由題意得,,則.故選C.【答案點睛】不能領會交集的含義易致誤,區分交集與并集的不同,交集取公共部分,并集包括二者部分.10、A【答案解析】

只需將“存在”改成“任意”,有實根改成無實根即可.【題目詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【答案點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.11、D【答案解析】

先求得名學生中,只能說出一種或一種也說不出的人數,由此利用比例,求得名學生中對四大發明只能說出一種或一種也說不出的人數.【題目詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發明只能說出一種或一種也說不出的有人,則,解得人.故選:D【答案點睛】本小題主要考查利用樣本估計總體,屬于基礎題.12、D【答案解析】試題分析:因為,所以為得到y=sin(2x-π3)的圖象,只需要將考點:三角函數的圖像變換.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

根據組合數得出所有情況數及兩個球顏色不相同的情況數,讓兩個球顏色不相同的情況數除以總情況數即為所求的概率.【題目詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.【答案點睛】本題主要考查了求事件概率,解題關鍵是掌握概率的基礎知識和組合數計算公式,考查了分析能力和計算能力,屬于基礎題.14、3或-1【答案解析】

設,分別令、,兩式相減即可得,即可得解.【題目詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【答案點睛】本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.15、【答案解析】

由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【題目詳解】因為函數,則因為,則故故答案為:【答案點睛】本題考查分段函數求值,屬于簡單題.16、【答案解析】

真數有最小值,根據已知可得的范圍,求出函數的最小值,建立關于的不等量關系,求解即可.【題目詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【答案點睛】本題考查對數型復合函數的性質,熟練掌握基本初等函數的性質是解題關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】

(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【題目詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【答案點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.18、(1)答案見解析(2)【答案解析】

(1)先對函數進行求導得,對分成和兩種情況討論,從而得到相應的單調區間;(2)對函數求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數,再構造新函數利用導數研究函數的最小值,從而得到的取值范圍.【題目詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【答案點睛】本題考查利用導數研究函數的單調性、最值,考查分類討論思想和數形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數研究單變量函數的性質.19、(1);(2)【答案解析】

(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據正弦定理可得,進而求得的值,再根據三角形的面積公式求解即可.【題目詳解】(1)由,得,得,由正弦定理得,顯然,同時除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【答案點睛】本題主要考查了正余弦定理與面積公式在解三角形中的運用,需要根據題意用正弦定理進行邊角互化,再根據三角恒等變換進行化簡求解等.屬于中檔題.20、(1)(2)分布列見解析,期望為20【答案解析】

利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【題目詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數學期望.【答案點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關鍵;屬于中檔題、常考題型.21、(1);(2)證明見解析.【答案解析】

(1)求出函數的定義域為,,分和兩種情況討論,分析函數的單調性,求出函數的最大值,即可得出關于實數的不等式,進而可求得實數的取值范圍;(2)利用導數分析出函數在上遞增,在上遞減,可得出,由,構造函數,證明出,進而得出,再由函數在區間上的單調性可證得結論.【題目詳解】(1)函數的定義域為,且.當時,對任意的,,此時函數在上為增函數,函數為最大值;當時,令,得.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得極大值,亦即最大值,即,解得.綜上所述,實數的取值范圍是;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論