




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖像為()A. B.C. D.2.趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.3.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.4.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對5.若,則下列關系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.46.函數(shù)在上單調遞增,則實數(shù)的取值范圍是()A. B. C. D.7.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.8.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.9.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種11.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)12.復數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.已知向量,且向量與的夾角為_______.16.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標準方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標原點,求證:為定值.18.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.19.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.20.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。21.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.22.(10分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.2、A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.3、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.4、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.5、D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結合的思想,是一道中檔題.6、B【解析】
對分類討論,當,函數(shù)在單調遞減,當,根據(jù)對勾函數(shù)的性質,求出單調遞增區(qū)間,即可求解.【詳解】當時,函數(shù)在上單調遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調性,熟練掌握簡單初等函數(shù)性質是解題關鍵,屬于基礎題.7、D【解析】
如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.8、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.9、C【解析】
根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.10、B【解析】
根據(jù)條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.11、C【解析】
根據(jù)函數(shù)奇偶性的性質即可得到結論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵.12、B【解析】
利用乘法運算化簡復數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數(shù)的概念及復數(shù)的乘法運算,考查學生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,設,則,所以,解得,所以,從而有.14、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15、1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎題.16、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標準方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設直線的方程為與橢圓方程聯(lián)立,借助韋達定理求得,利用直線與圓相切,即,求得的關系代入,化簡即可證得即可證得結論.【詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標準方程為.(2)①當直線l的斜率不存在時,不妨設其方程為,則,所以,即.②當直線l的斜率存在時,設其方程為,并設,由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點睛】本題考查了橢圓的標準方程,直線與橢圓的位置關系中定值問題,考查了學生計算求解能力,難度較難.18、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結果;(2)在中,由余弦定理得,在中結合正弦定理求出,從而得出,即可得出的解析式,最后結合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設,其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的實際應用,還涉及二倍角正弦公式和誘導公式,考查計算能力.19、(1)見解析(2)1【解析】
(1)選②,③.可得,結合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當時,有最大值1.【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.20、(1)l的普通方程;C的直角坐標方程;(2).【解析】
(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數(shù)即可得到直線的直角坐標方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關鍵.21、(1);(2).【解析】
(1)求導得到,討論和兩種情況,計算函數(shù)的單調性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒成立,所以單調遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數(shù)在上單調遞減,在上單調遞增,函數(shù)。(i)當即,所以符合題意,(ii)當即時,因為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融行業(yè)財務代理記賬及風險管理合同模板
- 公共交通設施標示牌設計施工一體化合同
- 生態(tài)農(nóng)業(yè)園區(qū)場地租賃與農(nóng)業(yè)設施建設合同范本
- 餐飲品牌區(qū)域授權承包經(jīng)營合同
- 主題餐廳租賃合同(含特色場景及活動策劃)
- 車輛抵押貸款合同債權債務重組合同樣本
- 餐飲企業(yè)市場拓展與推廣服務合同
- 老年教育課程設置與教學方法創(chuàng)新實踐對培養(yǎng)老年人道德品質的研究報告
- 坍塌救援演練方案
- 參觀實驗室心得體會
- 風幕機安裝施工方案
- 《學科建設》課件
- 人音版音樂七年級上冊《夏夜圓舞曲》課件
- 迎賓及頒獎禮儀培訓
- 2024新版(滬教版)三年級英語上冊英語單詞帶音標
- 電子煙質量管理手冊
- 城市數(shù)字底座CIM數(shù)字城市發(fā)展方向與技術
- 影響力從語言開始學習通超星期末考試答案章節(jié)答案2024年
- 設備外協(xié)制作合同模板
- 走進創(chuàng)業(yè)學習通超星期末考試答案章節(jié)答案2024年
- 中海新房購房合同模板
評論
0/150
提交評論