




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
十一、電子能譜
(ElectronSpectroscopyforSurface
Analysis)近代分析實驗原理(Introductionofmodernanalyticalmethods)121.BasicPrinciplesElectronSpectroscopyelementalanalysisEmitcharacteristicelectronsPhotoelectronsAugerelectronsAugerelectronspectroscopy(AES)X-rayphotoelectronspectroscopy(XPS)surfacechemicalanalysis(generally20–2000eV)(adepthof10nmorless)3Emissionprocessesofcharacteristicelectrons:(a)a1sphotoelectron;and(b)aKL1L2,3Augerelectron41.1X-rayPhotoelectronSpectroscopyTheX-rayphotoelectronisanelectronejectedfromanelectronshellofanatomwhentheatomabsorbsanX-rayphoton.thebindingenergyoftheatom’sphotoelectron(EB):aphotoelectronwithkineticenergyEKtheenergyrequiredforanelectrontoescapefromamaterial’ssurfacecharacteristicvaluesidentifieschemicalelementsthebindingenergyIncidentX-rayphoton5XPSspectrumofanoxidizedaluminumsurface.peaksfromAugerelectronselementsymbolplusashellsymbol6Thephotoelectronsemittedbysubshellsp,dandfarecommonlymarkedwithanadditionalfractionnumberJ,71.2AugerElectronSpectroscopyAugerelectronswerenamedafterPierreAugerwho,togetherwithLiseMeitner,discoveredAugerelectronemissionin1920s.anincidentelectronknocksoutaKshellelectron,aL1shellelectronrefillstheKshellvacancy,andaL2,3shellelectronisejectedastheAugerelectron.thebindingenergyofelectronshell-Φ8AESspectraofanoxidizedaluminumsurface:(a)directspectrumofintensityversuskineticenergyofAugerelectrons;and(b)differentialspectrumofintensityversuskineticenergyofAugerelectrons.9SchematiccomparisonofAugerpeakintensitywithotherelectronsescapedfromasolidsurface.Eoindicatesenergyofincidentelectrons.ThekineticenergyofelectronscanbedividedintothreeregionsI,IIandIIIfromlowtohigh.TheprimaryelectronsejectedfromasolidsurfacebyinelasticscatteringcomprisethebackgroundofanAESspectrumintheregionofhighkineticenergieswhilethesecondaryelectronscomprisethebackgroundintheregionoflowkineticenergies.102.InstrumentationStructureofanelectronspectrometer(combiningXPSandAES)10?8–10?10mbarPreventthescatteringKeepthesurfacecleanstainlesssteelcrushedcoppergasketsanelectrongun,anX-raygunandasharedanalyzerofelectronenergy.magneticshielding112.1SourceGuns2.1.1X-rayGunNon-monochromaticX-rayradiationfromanX-raygunwithanAltarget.ThecharacteristicAlKαlineisatabout1.5keV.commonlyAlorMgLowerenergyX-raysnarrowlinewidthXPSrequiresalinewidthlessthan1.0eVtoensuregoodenergyresolution.BothAlKαandMgKαexhibitlinewidthslessthan1.0eVandalsohavesufficientenergies(>1000eV)forphotoelectronexcitation.usesbothnon-monochromaticandmonochromaticX-raysourcesAlKαandMgKα1.4866and1.2536keVCuKαandMoKα8.04keVand17.44keV12AnX-raygunwithtwo-anodes.Twotaperedanodefaces(oneisAlandtheotherisMg)havesemi-circularfilaments,whichareneargroundpotential.Anaccelerationvoltageofabout15kVbetweenafilamentandanodegeneratesX-raysthatexitthroughanAlwindow.switchingbetweenMgKαandAlKα,AlKαandMgKαare1.4866and1.2536keVlinewidthlessthan1.0eV132.1.2ElectronGunsimilartothoseusedinelectronmicroscopy(LaB6andfieldemissionguns)2.1.3IonGunThefunctionsofaniongunaretwofold.First,itprovidesahighenergyionfluxtocleansamplesurfacesbeforeexamination.Thesecondfunctionoftheiongunistosputteroutsampleatomslayerbylayersothatanelementaldepthprofilecanberevealed.(argonion)Energy:0.5to5.0keVfocusedtoadiameterdowntoseveraltensofmicrometers.scanasurfaceareaaslargeas10×10mm142.2ElectronEnergyAnalyzersWorkingprinciplesofaconcentrichemisphericalanalyzer.concentrichemisphericalanalyzer(CHA)(hemisphericalsectoranalyzer(HSA))NegativeTheCHAonlyallowstheelectronswithenergyE=eVo,whichareinjectedtangentiallytothemediansurface,topassthroughitschannelandreachthedetector.V0passenergy15constantanalyzerenergy(CAE)modeXPSconstantretardingratio(CRR)modeAESelectronretardationElectronenergyreductionCHAXPSrequireshighabsoluteresolutionofabout0.5eVinthewholerangeofaspectrum.CHAhasarelativeresolutionlimit.ForE=200eV,aCHArequiresarelativeresolutionof0.025tosatisfytheXPSabsoluteresolutionof0.5eV.However,forE=1500eV,aCHArequiresarelativeresolutionof0.003todoso,whichisnotpractical.lowCHApassenergy:10–100eVAugeranalysisrequiressuppressingtheelectronsignalatthelowenergyendofitsspectrum.CHA:LowtransmissionratewithlowpassenergyWhenaconstantretardationratioisapplied,alowAugerelectronenergygenerateslowCHApassenergy.163.CharacteristicsofElectronSpectra3.1PhotoelectronSpectraAnXPSspectrumofsilverexcitedMgKαwithpassenergyof100eV.thevalence-levelpeaktheAugerpeakscore-levelphotoelectronpeaksElementalanalysisPrimarilyusefulinstudiesoftheelectronicstructureofmaterials.Thevalence-levelpeaksarethoseatlowbindingenergy(0–20eV)17ExamplesofseveraltypesofsatellitepeaksinXPSspectra:(a)shake-uppeaksinaCuOspectrum;(b)shake-uppeaksandmultipletsplittinginaNiOspectrum;and(c)plasmonlosspeakinacleanAlspectrum.resultfrominteractionbetweenaphotoelectronandavalenceelectron.hasunpairedelectronsinitsvalencelevelexcitescollectivevibrationsinconductionelectronsinametalNousefulinformation183.2AugerElectronSpectraAugerspectraofacontaminatedtungstenfoilacquiredinafixedretardingratiomodewith0.6%relativeresolution:(a)directspectrum;and(b)differentialspectrum.ElementsP,N,O,W,Careindicated.thefirstderivativeofthecurvePeak
positionslightlydifferent.19ChartofprincipalAugerelectronenergiesofKLL,LMMandMNNlinesAlightelementisoftenidentifiedfromitsKLLAugerlines,whichdominateintheAugerspectrumrange.However,foranelementwithatomicnumberhigherthan15,eitherLMMorMNNAugerlinesaredominant.TheLMMlinesforanelementaredividedintothree,astriplets.TheLMMtripletfeatureresultsfromthedifferenceinsubshellsinvolvedintheAugerprocess.20PrincipalAugerKLLpeaksoflightelements,Be,B,C,N,O,FandNa.KL23L23isthemostvisibleKLLpeakforeachelement;forexample,OKL1L1(468eV),OKL1L23(483eV)andOKL23L23(503eV).21TripletpeaksofAugerspectraforCr,MnandFe.TheLMMtripletsoccurintransitionmetals.ThelowkineticenergypeaksareofL2,3VVwhereVrepresentsthelevelofvalenceelectrons.224QualitativeandQuantitativeAnalysisChemicalanalysisidentifychemicalelementschemicalstatusthespatialdistributionsofelements4.1QualitativeAnalysis23PeakIdentificationThepeaksinanAESspectrumcanbeidentifiedbycomparingtheexperimentalpeakswithstandardpeaksfoundinreferencebooksorcomputerdatabases.PeakidentificationsinXPSspectra,however,aremorecomplicatedbecauseAugerpeaksmaybepresent.distinguishtheAugerpeaksfromphotoelectronpeaksAnAugerpeakwillshiftinapparentbindingenergyinanXPSspectrumwhenwechangetheX-raysource.Forexample,anAugerpeakshiftsby233eVintheXPSspectrumwhenwechangetheradiationfromMgKα(1253.6eV)toAlKα(1486.6eV).CalibrationC1speakat284.8eVFixedPeakpositionsinanXPSspectrumarelikelytobeaffectedbyspectrometerconditionsandthesamplesurface.24ChemicalShiftsChemicalshiftsofbindingenergypeaksforanelementarecausedbythesurroundingchemicalstateoftheelement.XPSspectrumofpoly(vinyltrifluoroacetate):(a)C1s;and(b)O1swithmonochromaticAlKαexcitation.聚(乙烯基三氟乙酸)carefullyresolvetheoverlappedpeakswithassistanceofcomputersoftware.25ChartofcarbonchemicalshiftinXPSspectra.Thelargerthenumberofelectronstransferred,thehigherthechemicalshift.26ComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.ChemicalshiftsalsooccurinAESspectra,andthechemicalshiftscanbesignificantlylargerthantheshiftsinXPS.Forexample,theshiftbetweenmetallicandoxideAlpeaksofAlKL2L3ismorethan5eVwhilethecorrespondingshiftofAl2pbindingenergyisonlyabout1eVComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.27InsulatingSample:ChargeaccumulationonsurfaceUncertainΦchargeneutralizationForAES,thissurfacechargeproblemwithinsulatingsamplesismoredifficulttoovercomebecausetheelectronshavetoberemovedfromtheinsulatingsurface,insteadofcompensatingforelectronloss.AESdoesnotworkwellwithtotallyinsulatingmaterials.XPS28CompositionImagingsimilartotheEDSmappingResolution:10μm(XPS);10nm(AES)Comparisonbetweenimagesofgold-coatedstainlesssteel:(a)ascanningelectronmicroscope(SEM)secondaryelectronimage;(b)ironAugerimage;(c)oxygenAugerimage;(d)goldAugerimage;and(e)nickelAugerimage.29XPSimagesofaTiAlNthinfilmonastainlesssteelsubstrate:(a)Ti2pphotoelectronimage;and(b)Fe2pphotoelectronimage.Theoxidizedfilmcontainsironthathasmigratedfromthesubstrate.304.2QuantitativeAnalysisAESsensitivityfactorsnormalizedtotheCuLMMlinefor10keVelectronradiation.Sensitivityfactorsarecalculatedfromthepeak
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJG(煙草)21-2010煙草實驗室大氣環(huán)境檢定規(guī)程
- EDTA與金屬離子配合物的穩(wěn)定性98課件
- 考研復習-風景園林基礎考研試題【滿分必刷】附答案詳解
- 《風景園林招投標與概預算》試題A附參考答案詳解(研優(yōu)卷)
- 2025-2026年高校教師資格證之《高等教育法規(guī)》通關題庫含答案詳解(輕巧奪冠)
- 2023國家能源投資集團有限責任公司第一批社會招聘筆試備考題庫及答案詳解(歷年真題)
- 2025福建省泉州鳳棲實業(yè)有限責任公司社會招聘17人筆試備考試題附答案詳解(研優(yōu)卷)
- 2025年黑龍江省五常市輔警招聘考試試題題庫含答案詳解(完整版)
- 2025年河北省定州市輔警招聘考試試題題庫及答案詳解(歷年真題)
- 政治●福建卷丨2021年福建省普通高中學業(yè)水平選擇性考試政治試卷及答案
- 道教全真考試試題及答案
- 2025+CSCO婦科腫瘤診療指南解讀
- 2025-2030中國電梯維修保養(yǎng)行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展趨勢與投資風險研究報告
- 全國高中數(shù)學說課大賽教學設計一等獎作品合輯
- 山東省德州市慶云縣2024-2025學年下學期七年級期中考試生物試題(含答案)
- 銀華紹興原水水利REIT:銀華紹興原水水利封閉式基礎設施證券投資基金2024年度資產(chǎn)評估報告
- 2025至2030年中國聚己內酯(PCL)行業(yè)深度調研與投資戰(zhàn)略咨詢報告
- 2023光儲一體化電站建設項目方案
- 動量、動量定理教學設計
- 2025-2030中國二手手機行業(yè)市場深度分析及前景趨勢與投資研究報告
- 2025年部編版新教材語文一年級下冊期末復習計劃及全冊單元復習課教案
評論
0/150
提交評論