




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、網絡嵌入和圖卷積神經網絡技術概述技術創新 變革未來網絡/圖數據圖是對于數據的一/通用、全面、復雜的表示形式網絡無處不在社交網絡生物網絡金融網絡物聯網信息網絡物流網絡為什么網絡很重要?我們很少只關心數據本身,而不關心數據之間的關聯Reflected by relational subjectsDecided by relational subjectsTargetImage CharacterizationTargetSocial Capital網絡數據對機器學習模型 不友好G = ( V, E )LinksTopologyInapplicability of ML methodsNetwork
2、 DataFeature ExtractionPattern DiscoveryPipeline for network analysisNetwork ApplicationsLearnabilityLearning from NetworksNetwork EmbeddingGNNG = ( V, E )G = ( V )Vector SpacegenerateembedEasy to parallelCan apply classical ML methods網絡嵌入 (Network Embedding)網絡嵌入的目標GoalSupport network inference in v
3、ector spaceReflect network structureMaintain network propertiesBACTransitivitypBasic idea: recursive definition of statespA simple example: PageRank圖神經網絡GNNF. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.定義在圖拓撲上的學習框架pMain idea: pass messages between pairs of nodes & agglomeratepS
4、tacking multiple layers like standard CNNs:pState-of-the-art results on node classification圖卷積神經網絡GCNT. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.圖神經網絡GNN簡史網絡嵌入與圖神經網絡GraphFeatureNetwork EmbeddingInputModelOutputEmbeddingTask resultsFeatureTo
5、pology to VectorGCNTask resultsFusion of Topology and FeaturesUnsupervised vs. (Semi-)Supervised圖卷積網絡 v . 網絡嵌入pIn some sense, they are different.pGraphs exist in mathematics. (Data Structure)p Mathematical structures used to model pairwise relations between objectspNetworks exist in the real world.
6、(Data)p Social networks, logistic networks, biology networks, transaction networks, etc.pA network can be represented by a graph.pA dataset that is not a network can also be represented by a graph.圖卷積網絡應用于自然語言處理p Many papers on BERT + GNN.p BERT is for retrieval.pIt creates an initial graph of relev
7、ant entities and the initial evidence.p GNN is for reasoning.pIt collects evidence (i.e., old messages on the entities) and arrive at new conclusions (i.e., new messages on the entities), by passing the messages around and aggregating them.Cognitive Graph for Multi-Hop Reading Comprehension at Scale
8、. Ding et al., ACL 2019.Dynamically Fused Graph Network for Multi-hop Reasoning. Xiao et al., ACL 2019.圖卷積網絡應用于計算機視覺pA popular trend in CV is to construct a graph during the learning process.pTo process multiple objects or parts in a scene, and to infer their relationships.pExample: Scene graphs.Sce
9、ne Graph Generation by Iterative Message Passing. Xu et al., CVPR 2017.Image Generation from Scene Graphs. Johnson et al., CVPR 2018.圖卷積網絡應用于符號推理pWe can view the process of symbolic reasoning as a directed acyclic graph.pMany recent efforts use GNNs to perform symbolic reasoning.Learning by Abstract
10、ion: The Neural State Machine. Hudson & Manning, 2019.Can Graph Neural Networks Help Logic Reasoning? Zhang et al., 2019.Symbolic Graph Reasoning Meets Convolutions. Liang et al., NeurIPS 2018.pStructural equation modeling, a form of causal modeling, tries to describe the relationships between the v
11、ariables as a directed acyclic graph (DAG).pGNN can be used to represent a nonlinear structural equation and help find the DAG, after treating the adjacency matrix as parameters.圖卷積網絡應用于結構方程建模DAG-GNN: DAG Structure Learning with Graph Neural Networks. Yu et al., ICML 2019.(大多數)圖卷積網絡方法的Pipeline Co-oc
12、currence (neighborhood)網絡嵌 : 拓撲向量化 High-order proximities網絡嵌 : 拓撲向量化 Communities網絡嵌 : 拓撲向量化 Heterogeneous networks網絡嵌 : 拓撲向量化(大多數)網絡嵌入方法的PipelineLearning for Networks v.s. Learning via GraphsLearning for networksLearning Via GraphsNetwork EmbeddingGCN網絡嵌入方法解決的核心問題Node NeighborhoodCommunityPair-wise
13、ProximityHyper EdgesGlobal StructureReducing representation dimensionality while preserving necessary topologicalstructures and properties.Nodes & LinksNon-transitivityAsymmetric TransitivityDynamicUncertaintyHeterogeneityInterpretabilityTopology-driven圖卷積神經網絡方法解決的核心問題Fusing topologyand featuresin t
14、he wayof smoothing features with the assistance of topology.Feature-driven如果問題是拓撲驅動的?Since GCN is filtering features, it is inevitably feature-drivenStructure only provides auxiliary information (e.g. for filtering/smoothing)When feature plays the key role, GNN performs good How about the contrary?S
15、ynthesis data: stochastic block model + random featuresMethodResultsRandom10.0GCN18.31.1DeepWalk99.00.1網絡嵌入 vs 圖神經網絡There is no better one, but there is more proper one.反思:圖神經網絡是否真的是深度學習方法? This simplified GNN (SGC) showsremarkable results:Node classificationText Classification反思:圖神經網絡是否真的是深度學習方法?Wu, Felix, et al. S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小紅書新媒體營銷策略
- 工業互聯網及物聯網發展機遇探討
- 工業4.0時代的決策支持系統
- 工業4.0時代的STEM技能需求
- 展覽會場觀眾互動體驗優化
- 展會展覽的光色環境設計實踐
- 小學音樂教育創新案例分享與啟示
- 少兒體育運動中的競技精神與團隊協作
- 少兒教育新模式探索
- 小紅書美妝內容創作
- 2025-2030中國智能視頻行業調研分析及發展趨勢預測研究報告
- 安徽省2024-2025學年八年級信息技術水平會考操作題
- 墓地征用協議書范本
- 2025年農藝工(高級)職業技能鑒定參考試題庫(含答案)
- 臨床氣管插管拔管后吞咽障礙評估與干預實踐應用
- 海南海虹化纖工業有限公司地塊第二階段土壤污染狀況調查報告
- 高壓滅菌鍋使用管理制度
- 堅持教育優先發展
- 外研版三年級下冊英語全冊單元測試卷(含期中期末試卷及聽力音頻)
- 斷絕父母關系協議書
- 2021年山東省6月普通高中學業水平合格考試化學試題(版含答案)
評論
0/150
提交評論