




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、 第四章 幾種常見的地圖投影第一節(jié) 圓錐投影第二節(jié) 方位投影 第三節(jié) 圓柱投影 第一節(jié) 圓錐投影一、圓錐投影的一般公式及其分類 1)概念 正軸切圓錐投影正軸割圓錐投影(1)按圓錐面與地球相對位置的不同,可分正軸、橫軸、斜軸圓錐投影。 斜軸圓錐投影正軸圓錐投影橫軸圓錐投影2)分類 (2)按標準緯線分為切圓錐投影和割圓錐投影。 (3)圓錐投影按變形性質(zhì)分為等角、等積和等距圓錐投影三種。 在制圖實踐中廣泛采用正軸圓錐投影。下面討論正軸圓錐投影的一般公式:3)一般公式二、等角圓錐投影等角圓錐投影在投影后微分圓仍保持為圓形,及沒有角度變形。該投影也稱蘭勃脫正形圓錐投影。根據(jù)等角條件 m=n或a=b可得出
2、正軸等角圓錐投影的一般公式為:上式中存在兩個常數(shù),即,K需要確定,根據(jù),K的確定方法不同,可將正形圓錐投影分為單標準緯線等角圓錐投影、雙標準緯線等角投影等。采用正軸圓錐投影繪制的中國地圖 三、等面積圓錐投影等面積圓錐投影在投影前后微分圓面積大小不變,即滿足條件P=ab=mn=1,可得出正軸等面積圓錐投影的一般公式為:上式中存在兩個常數(shù),即,c需要確定,根據(jù),c的確定方法不同,可將等面積圓錐投影分為單標準緯線等面積圓錐投影、雙標準緯線等面積投影等。采用等積割圓錐投影繪制的世界地圖亞爾波斯(Albers)等積圓錐投影 四、等距離圓錐投影正軸等距圓錐投影在投影前后沿經(jīng)線保持等距離,即滿足條件m=1,
3、可得出正軸等距離圓錐投影的一般公式為:上式中存在兩個常數(shù),即,c需要確定,根據(jù),c的確定方法不同,可將等面積圓錐投影分為單標準緯線等距離圓錐投影、雙標準緯線等距離投影等。五、圓錐投影變形分析及應用變形只與緯度有關,與經(jīng)差無關,同一緯線上的變形是相同的; 切圓錐投影中,標準緯線上長度比等于n0=1,其余緯線上長度比均大于1,并向南、北方向增大;在割圓錐投影中,標準緯線n1=n2=1,變形自標準緯線 向內(nèi)、向外增大,在 之間n1。 適合中緯度處沿緯線伸展的制圖區(qū)域之投影 1)圓錐投影一般變形規(guī)律切圓錐投影變形分布割圓錐投影變形分布n為緯線長度比切圓錐投影隨緯距的變化等角圓錐投影的變形特點:角度無變
4、形,沿經(jīng)線和緯線的長度變形是相同的,面積變形約為長度變形的兩倍。 等面積圓錐投影的變形特點:面積變形等于零,此時沿經(jīng)線長度比與沿緯線長度比互為倒數(shù),兩者變形值的符號相反,角度變形較大,約為長度變形的兩倍。 等距離圓錐投影的變形特點:除沿經(jīng)線長度比保持為1外,沿緯線的長度變形近似和角度變形及面積變形相等。 2)不同性質(zhì)圓錐投影的變形分析 緯線是同心圓弧,經(jīng)線是放射狀直線束,經(jīng)緯線互相垂直,經(jīng)緯線方向是主方向。等變形線是平行于緯線的同心圓弧,離開標準緯線越遠變形越大。該投影適合繪制中緯度沿東西方向延伸地區(qū)的地圖。 3)圓錐投影的特點總結(jié) 第二節(jié) 方位投影一、方位投影的概念及一般公式 1)概念方位投
5、影可視為將一個平面切于或割于地球某一點或一部分,再將地球球面的經(jīng)緯度網(wǎng)投影到此平面上,有以下性質(zhì):從投影中心向各個方向引出的方向線(垂直圈)投影后方位不變;平面與球面相切或相割處無變形,故稱標準點或標準線;等變形線(等高圈)是以投影中心為圓心的同心圓。在正軸方位投影中,緯線投影后為同心圓,經(jīng)線投影后為交于一點的直線束,且兩經(jīng)線間的夾角與實地經(jīng)度差相等;對于橫軸或斜軸方位投影,則等高圈投影后為同心圓,垂直圈投影后為同心圓的半徑,且兩垂直圈之間的交角與實地方位角相等。根據(jù)以上關系可確定方位投影的一般公式。2)方位投影一般公式:其中,z為以Q為原點的球面極坐標;長度比:面積比及最大角度變形:投影面平
6、面直角坐標:投影面極坐標: (1)按指定要求,確定球面極坐標原點即投影中心的經(jīng)緯度 ; (2)根據(jù)球面三角公式將地面各點的地理坐標 換算至球面極坐標 ; (3)按公式先后計算投影極坐標和及平面直角坐標x和y; (4)最后計算長度比、面積比和角度變形。 3)方位投影計算步驟方位投影可劃分為非透視投影和透視投影兩種: 4)方位投影分類非透視方位投影按投影性質(zhì)可分為等角、等面積和任意(包括等距離)投影;透視方位投影根據(jù)視點位置不同可分為正射、外心、球面和球心投影;此外,根據(jù)投影面與地球相對位置不同可分為正軸、橫軸和斜軸方位投影;根據(jù)投影面與地球相切或相割的關系可分為切方位投影和割方位投影。二、等角方
7、位投影等角方位投影沒有角度變形,即主方向上長度比相等,據(jù)此可得等角方位投影中極距的函數(shù)形式: 式中,R為地球半徑,指定某等高圈 上這樣等角方位投影的一般公式如下:當 ,即投影面切在投影中心時:對于正軸投影,只需在一般投影公式中,以代替,以(90- )代替z;三種等角方位投影的半球經(jīng)緯度形狀如下:正軸橫軸斜軸正軸等角方位投影橫軸等角方位投影三、等面積方位投影等面積方位投影沒有面積變形,即面積比P=1,據(jù)此可得等面積方位投影中極距的函數(shù)形式: 這樣等面積方位投影的一般公式如下:對于正軸投影(蘭勃脫等面積方位投影),只需在一般投影公式中,以代替,以(90- )代替z;正軸(等積)方位投影南北兩極(半
8、球)圖蘭勃脫等面積方位投影橫軸等積方位投影東西半球圖斜軸等積方位投影水陸半球圖斜軸等積方位投影中國行政區(qū)劃圖四、等距離方位投影等距離方位投影通常是指沿垂直圈長度比等于1的一種方位投影,即需滿足條件 ,據(jù)此可得極距公式為:這樣等距離位投影的一般公式如下:由于 ,即 ,此時對于正軸投影(波斯托投影),只需在一般投影公式中,以代替,以(90- )代替z;如:斜軸等距方位投影航空、無線電通訊等距:指從投影中心向各個方向長度變形為零。五、透視方位投影透視方位投影時基于透視原理確定極距的函數(shù)形式。根據(jù)視點離球心的距離D的大小不同可分為:正射投影:D 外心投影:RD 球面投影:D=R 球心投影:D=0 透視
9、方位投影一般公式: 六、方位投影變形分析與應用1)正軸方位投影變形特點: 等變形線與緯圈一致;在切方位投影中,切點上無變形,隨著遠離切點,變形增大; 在割方位投影中,在所割小圓上 ,角度變形與“切”的情況一樣,其他變形(長度變形與面積變形)則自所割小圓向內(nèi)與向外增大。等角方位投影:編制某些要求方向正確的自然地圖( 氣象圖、洋流圖、雷達測距圖和航空線圖) 正軸等角方位投影:兩極地區(qū)的航空圖或航海圖斜軸等角方位投影:世界的某一大陸或大區(qū)域的小比例尺地圖,如航空路線圖或自然地理圖2)應用就制圖區(qū)域形狀而言,方位投影適宜于具有圓形輪廓的區(qū)域;就制圖區(qū)域地理位置而言,兩級地區(qū)宜采用正軸投影,赤道附近區(qū)域
10、宜采用橫軸投影,其他區(qū)域宜采用斜軸投影。 等面積方位投影:適合制作要求保持面積正確的近似圓形地區(qū)的區(qū)域地圖,如普通地圖、行政區(qū)劃圖、政治形勢圖等。 正軸等面積方位投影:極地地圖和南北半球圖橫軸等面積方位投影:赤道附近圓形區(qū)域地圖, 如非洲圖、東西半球圖斜軸等面積方位投影:中緯度近圓形區(qū)域的地圖, 如亞洲圖、歐亞大陸圖、美洲圖、中國全圖等距離方位投影:普通地圖、政區(qū)圖、自然地理圖等 正軸等距離方位投影:兩極地圖 橫軸等距離方位投影:東、西半球圖 斜軸等距離方位投影:水路半球圖、特殊用途要求的專題地圖(如以某飛行基地為中心的飛行半徑圖、以導彈發(fā)射井為中心的打擊目標圖、以地震觀測站為中心的地震圖等)
11、透視方位投影: 球心投影:航空圖或航海圖、無線電定位圖 球面投影:較大區(qū)域的地圖、某些專題圖(廣播衛(wèi)星覆蓋地域圖、武器射程半徑圖等) 外心投影:制作富有立體感的宣傳、鼓動圖中應用得較多,逐步成為空間透視投影的基礎。 正射投影:星球圖、天體圖 第三節(jié) 圓柱投影一、圓柱投影的一般公式及分類 根據(jù)圓柱投影后經(jīng)緯線的表象特征,不難得出圓柱投影的一般公式: 一般公式中函數(shù) f( ) 取決于投影的性質(zhì)。為一常數(shù) ,當圓柱與地球赤道相切時,為赤道半徑;當圓柱與地球相割時,為割緯圈的緯圈半徑 。分類圓柱和地球體相切相割的位置不同,圓柱投影又分為正軸、橫軸和斜軸圓柱投影三種。正軸圓柱投影橫軸圓柱投影斜軸圓柱投影
12、按變形的性質(zhì)劃分,圓柱投影可分為等角、等面積和等距離投影 。在應用上以等角圓柱投影為最廣。二、等角圓柱投影正軸等角圓柱投影又稱為墨卡托投影,其一般公式為:式中,mod為對數(shù)的模:mod=1/ln10=0.43429448切圓柱投影 割圓錐投影 切、割兩種投影情況的變形表 等角航線(斜航線):地球表面上與經(jīng)線成相同角度的曲線,或者說地球上兩點間的一條等方位線。三、高斯-克呂格投影高斯-克呂格投影時等角橫切圓柱投影,并將中央經(jīng)線東西哥一定的經(jīng)差范圍內(nèi)的經(jīng)緯線投影到橢圓柱面上,并將此圓柱面展為平面。高斯-克呂格的投影條件 1、中央經(jīng)線和赤道投影為平面直角坐標系的坐標軸2、投影后無角度變形3、中央經(jīng)線
13、投影后保持長度不變據(jù)此,可得高斯克呂格投影的直角坐標公式:高斯-克呂格投影長度比公式:高斯-克呂格投影子午線收斂角公式:(1)當00時,1,即中央子午線上無任何長度變形; (3)在同一條緯線上,離中央經(jīng)線越遠,則變形越大,最大值位于投影帶的邊緣; (4)在同一經(jīng)線上,緯度越低,變形越大,最大值位于赤道上; (2)除中央子午線外,其它任何線段均伸長了; (5)本投影屬于等角性質(zhì),故沒有角度變形,面積比為長度比的平方。(6)長度比的等變形線平行于中央子午線。高斯-克呂格的投影變形規(guī)律如下:高斯-克呂格投影不同情況下的投影長度變形值(1)60分帶法 高斯-克呂格投影分帶(2)30分帶法 優(yōu)越性:控制
14、變形 提高地圖精度 減輕坐標值的計算工作量缺點: 鄰帶間互不聯(lián)系,鄰帶間相鄰圖幅不 便拼接高斯-克呂格投影分帶優(yōu)缺點(1)將各帶的坐標縱軸西移500公里 y=y+500000m(2)加上投影帶號。 y=n*1000000+yyA=245863.7myB=168474.8m yA=745863.7myB=331525.2m yA=20745863.7myB=20331525.2m高斯-克呂格投影分帶坐標規(guī)定四、通用橫軸墨卡托投影通用橫軸墨卡托(Universal Transverse Mercator Projection,UTM)與高斯克呂格投影的主要不同之處在于UTM為橫軸等角割圓柱投影,與地球相割的兩條等高圈上投影沒有變形,中央經(jīng)線上的長度比小于1,為0.9996。橫軸墨卡托投影五、圓柱投影變形分析與應用1)正軸圓柱投影變形特點: 變形隨緯度變化,與經(jīng)差無關; 在切圓柱投影中,赤道無變形,變形自赤道向兩側(cè)隨緯度的增加而增大;在割圓柱投影中,在兩條標準緯線上無變形,變形自標準緯線向內(nèi)和向外增大。 適宜于低緯度沿緯線伸展的地區(qū)。墨卡托投影:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬結(jié)構在光伏發(fā)電跟蹤系統(tǒng)中的應用考核試卷
- 2024年植物促生菌劑項目資金需求報告代可行性研究報告
- 2024年原油加工量項目資金籌措計劃書代可行性研究報告
- 深入探討計算機二級Web考試復習重點試題及答案
- 抖音直播電商合作權益分配與售后服務協(xié)議
- 網(wǎng)紅面包品牌品牌授權及產(chǎn)品研發(fā)與技術支持合作協(xié)議
- 職業(yè)技能培訓機構教練員知識產(chǎn)權保護聘用合同
- 高端生物合成研究員勞動合同
- 2025年中國半導體膠膜行業(yè)市場前景預測及投資價值評估分析報告
- 港口集裝箱堆場管理與運營承包協(xié)議
- DB23T 2583-2020 固體礦產(chǎn)勘查放射性檢查技術要求
- 無菌藥品(附檢查指南)
- 眾辰變頻器說明書3400
- 山東大學《概率論與數(shù)理統(tǒng)計》期末試題及答案
- GB∕T 33917-2017 精油 手性毛細管柱氣相色譜分析 通用法
- 新能源汽車的研究論文
- 材料科學基礎基礎知識點總結(jié)
- 數(shù)控銑工圖紙(60份)(共60頁)
- 惠州市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(含答案)
- 加工設備工時單價表
- 高脂血癥藥物治療ppt課件
評論
0/150
提交評論