




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知復數在復平面內對應的點的坐標為,則下列結論正確的是( )AB復數的共軛復數是CD2馬林梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p1作了大量的計算、驗證工作
2、,人們為了紀念梅森在數論方面的這一貢獻,將形如2P1(其中p是素數)的素數,稱為梅森素數.若執行如圖所示的程序框圖,則輸出的梅森素數的個數是( )A3B4C5D63在區間上隨機取一個數,使直線與圓相交的概率為( )ABCD4如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為( )A12BCD5設復數滿足,在復平面內對應的點的坐標為則()ABCD6直線x-3y+3=0經過橢圓x2a2+y2b2=1ab0的左焦點F,交橢圓于A,B兩點,交y軸于C點,若FC=2CA,則該橢圓的離心率是()A3-1B3-12C22-2D2-17雙曲線C:(,)的離心率是3,焦點
3、到漸近線的距離為,則雙曲線C的焦距為( )A3BC6D8已知函數,其中,若恒成立,則函數的單調遞增區間為( )ABCD9設,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經過點,若的面積為,則雙曲線的離心率為( )ABCD11五行學說是華夏民族創造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為( )ABCD12若P是的充分不必要條件,
4、則p是q的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13在平面五邊形中,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是_.14已知為正實數,且,則的最小值為_.15在三棱錐中,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為_.16甲、乙、丙、丁4名大學生參加兩個企業的實習,每個企業兩人,則“甲、乙兩人恰好在同一企業”的概率為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標系中,曲線的參
5、數方程為(為參數),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.18(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設點,直線l與曲線C交于不同的兩點A、B,求的值19(12分)已知函數.(1)若函數的圖
6、象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.20(12分)在開展學習強國的活動中,某校高三數學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數;(2)記X為選出的4名選手中女教師的人數,求X的概率分布和數學期望.21(12分)已知函數(1)當時,求的單調區間(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程(3)已知分別在,處取得極值,求證
7、:22(10分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,求證:當時,參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.2C【解析】模擬程序的運行即可求出
8、答案【詳解】解:模擬程序的運行,可得:p1,S1,輸出S的值為1,滿足條件p7,執行循環體,p3,S7,輸出S的值為7,滿足條件p7,執行循環體,p5,S31,輸出S的值為31,滿足條件p7,執行循環體,p7,S127,輸出S的值為127,滿足條件p7,執行循環體,p9,S511,輸出S的值為511,此時,不滿足條件p7,退出循環,結束,故若執行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C【點睛】本題主要考查程序框圖,屬于基礎題3C【解析】根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得 所以相交的概率,故選C.【
9、點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.4C【解析】過作于,連接,易知,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.5B【解析】根據共軛復數定義及復數模的求法,代入化簡
10、即可求解.【詳解】在復平面內對應的點的坐標為,則,代入可得,解得.故選:B.【點睛】本題考查復數對應點坐標的幾何意義,復數模的求法及共軛復數的概念,屬于基礎題.6A【解析】由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入橢圓的方程,求得a2=33+62,進而利用橢圓的離心率的計算公式,即可求解.【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令y=0,解得x=3,所以c=3,即橢圓的左焦點為F(-3,0),且a2-b2=3 直線交y軸于C(0,1),所以,OF=3,OC=1,FC=2,因為FC=2CA,所以F
11、A=3,所以A32,32,又由點A在橢圓上,得3a2+9b2=4 由,可得4a2-24a2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以橢圓的離心率為e=3-1.故選A.【點睛】本題考查了橢圓的幾何性質離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:求出a,c ,代入公式e=ca;只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得e的值(范圍)7A【解析】根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以
12、所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.8A【解析】,從而可得,再解不等式即可.【詳解】由已知,所以,由,解得,.故選:A.【點睛】本題考查求正弦型函數的單調區間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.9B【解析】先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.10B【解析】根據題意,設點在第一象限,求出此坐標
13、,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,又以為直徑的圓經過點,則,即,解得,所以,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.11A【解析】列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛
14、】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現象的發生.12B【解析】試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B考點:邏輯命題二、填空題:本題共4小題,每小題5分,共
15、20分。13【解析】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質可知,直線與的交點為幾何體外接球的球心,取的中點,連接,由條件得,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的
16、半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.14【解析】,所以有,再利用基本不等式求最值即可.【詳解】由已知,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.15【解析】根據題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的
17、平面角的補角,即有.易證面,而三角形為等邊三角形, 為的中點.設, .故三棱錐的體積為當且僅當時,即.三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,四邊形為矩形.則,在中,解得.三棱錐的外接球的表面積為.故答案為:【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數學運算能力和邏輯推理能力,屬于較難題.16【解析】求出所有可能,找出符合可能的情況,代入概率計算公式【詳解】解:甲、乙、丙、丁4名大學生參加兩個企業的實習,每個企業兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為【點睛】本題考
18、查古典概型及其概率計算公式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),(2)存在,【解析】(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉化為極坐標方程.根據極坐標和直角坐標轉化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.由圖像可知,存在這樣的點,則,且點到直線的距離,.【點睛】本
19、小題主要考查坐標變換,考查直線和圓的位置關系,考查極坐標方程和直角坐標方程相互轉化,考查參數方程化為普通方程,考查數形結合的數學思想方法,屬于中檔題.18(1),(2)【解析】(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數即可得到直線的直角坐標方程;(2) 由于在直線上,寫出直線的標準參數方程參數方程,代入曲線的方程利用參數的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據極坐標與直角坐標之間的相互轉化,而,則,即,故直線l的普通方程為,曲線C的直角坐標方程(2)點在直線l上,且直線的傾斜角為,可設直線的參數方程為:(t為參數),代入
20、到曲線C的方程得,由參數的幾何意義知【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數方程中的參數的幾何意義是解題的關鍵,難度一般.19(1)(2)【解析】(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論【詳解】解(1)函數所以討論:當時,無零點;當時,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;當時,令,解得(舍)或當時,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,
21、當時,恒成立.又討論:若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.若,則當時,恒成立,所以在上是增函數,據求解知,不符合題意.若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性解題關鍵是通過分類討論研究函數的單調性本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力20(1)28種;(2)分布見解析,.【解析】(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數;(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數為種.(2)X的可能取值為0,1,2,3.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 做飯大賽活動方案
- 健康之星活動方案
- 健康吃喝活動方案
- 健康心理少先隊活動方案
- 健康教育活動系列活動方案
- 健康界擂臺賽活動方案
- 健康繪傘活動方案
- 健康長壽慶百歲活動方案
- 健步走服務活動方案
- 健身團建活動方案
- 2025年商業倫理與社會責任認識考試試卷及答案
- 病例康復治療匯報
- 2025-2030中國半導體行業市場現狀供需分析及投資評估規劃分析研究報告
- 退休返聘合同和協議書
- 終止妊娠協議書模板
- 2025屆高三下學期高考物理模擬試題(二模)含答案
- 移動式冷庫租賃合同協議
- 視頻編輯考試題及答案
- 山東詠坤新材料科技有限公司年產4000噸鋰鈉電池負極材料生產項目報告書
- 2025年山東濟南先行投資集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 業務結算補充合同標準文本
評論
0/150
提交評論