




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數若函數在上零點最多,則實數的取值范圍是( )ABCD2如圖是甲、乙兩位同學在六次數學小
2、測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是( )A甲得分的平均數比乙大B甲得分的極差比乙大C甲得分的方差比乙小D甲得分的中位數和乙相等3下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則 (3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A1B2C3D44函數的圖象向右平移個單位得到函數的圖象,并且函數在區間上單調遞增,在區間上單調遞減,則實數的值為( )ABC2D5函數的圖象與函數的圖象的交點橫坐標的和為( )ABCD6設復數滿足(為虛數單位),則在復平面內對應的點位于( )A第一象限B第二象
3、限C第三象限D第四象限7如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為( )ABCD8設,若函數在區間上有三個零點,則實數的取值范圍是( )ABCD9將函數的圖像向左平移個單位得到函數的圖像,則的最小值為( )ABCD10如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為( )ABCD11已知函數,則在上不單調的一個充分不必要條件可以是( )ABC或D12已知為虛數單位,若復數,則ABCD二、填空題:本題共4小題,每小題5分,共20分。13過點,且圓心
4、在直線上的圓的半徑為_14某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為_15我國古代名著張丘建算經中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為_尺,體積是_立方尺(注:1丈=10尺).16在中,角的對邊分別為,且若為鈍角,則的面積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知在多面體中,平面平面,且四邊形為正方
5、形,且/,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.18(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,且,求BD的長度.19(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.20(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數變化時,記分別為的面積,
6、求的最小值21(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是:(是參數).(1)若直線l與曲線C相交于A、B兩點,且,試求實數m值.(2)設為曲線上任意一點,求的取值范圍.22(10分)已知,函數的最小值為1(1)證明:(2)若恒成立,求實數的最大值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】將函數的零點個數問題轉化為函數與直線的交點的個數問題,畫出函數的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切
7、線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數的零點個數的問題,曲線的切線問題,注意運用轉化思想和數形結合思想,屬于較難的壓軸題.2B【解析】由平均數、方差公式和極差、中位數概念,可得所求結論【詳解】對于甲,;對于乙,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確故選:【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題3C【解析】由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確
8、的;(2)中,根據正態分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態分布曲線的性質,可知其對稱軸的方程為,所以 是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記
9、含有量詞的否定、正態分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題4C【解析】由函數的圖象向右平移個單位得到,函數在區間上單調遞增,在區間上單調遞減,可得時,取得最大值,即,當時,解得,故選C.點睛:本題主要考查了三角函數圖象的平移變換和性質的靈活運用,屬于基礎題;據平移變換“左加右減,上加下減”的規律求解出,根據函數在區間上單調遞增,在區間上單調遞減可得時,取得最大值,求解可得實數的值.5B【解析】根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數
10、的圖象與函數的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.6A【解析】由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.7A【解析】設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯立,消去得,由,解得,方程為,解得,則點,所以
11、,陰影部分區域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.8D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2
12、)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.9B【解析】根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,當時,取得最小值為,故選:【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵10C【解析】分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余
13、弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.11D【解析】先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.12B【解析】由可得,所以,故選B二、填空題:本題共4
14、小題,每小題5分,共20分。13【解析】根據弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經過點則直線的斜率為 所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為 故答案為: 【點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.14【解析】由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為
15、,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.1521 3892 【解析】根據題意畫出圖形,利用棱錐與棱臺的結構特征求出正四棱臺的高,再計算它的體積.【詳解】如圖所示:正四棱錐P-A BCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-ABCD,且上底邊長為AB=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點睛】本題考查了棱錐與棱臺的結構特征與應用問題,也考查了棱臺的體積計算問題,屬于中檔題.16【解析】轉化為,利用二
16、倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以又因為,且為銳角,所以由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2).【解析】(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得
17、平面,又平面,故可得.在三角形中,因為為中點,故可得/,為中點;又因為四邊形為等腰梯形,是的中點,故可得/;又,且平面,平面,故面面,又因為平面,故面.即證.(2)連接,作交于點,由(1)可知平面,又因為/,故可得平面,則;又因為/,故可得即,兩兩垂直,則分別以,為,軸建立空間直角坐標系,則,設面的法向量為,則,則,可取,設平面的法向量為,則,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎題.18(1)(2)【解析】(1)根據共線得到,利用正弦定理化簡得到答案.(2)根據余弦定理得到,再利用余弦定理計算得到答案.
18、【詳解】(1)與共線,.即,即,.(2),在中,由余弦定理得:,.則或(舍去).,.在中,由余弦定理得:,.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學生的綜合應用能力.19(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.20(1)x2=4y(2).【解析】試題解析:()設點P(x0,),由x2=2py(p0)得,y=,求導y=,因為直線PQ的斜率為1,所以=1且x0-2=0,解得p=2,所以拋物線C1的方程為x2=4y()因為點P處的切線方程為:y-=(x-x0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理信息管理
- 房地產項目管理軟件工具介紹
- 彩妝深情小招數 愛的傳遞與綻放
- 2025年醫藥企業研發外包(CRO)模式下的臨床試驗數據挖掘與數據挖掘工具
- 數學 期末綜合復習選擇壓軸題專題提升訓練+2024-2025學年人教版七年級數學下冊
- PEP人教版小學英語三年級下冊期末檢測卷及答案共4套
- 環境經濟項目合同管理創新重點基礎知識點歸納
- 現代建筑技術對項目管理的影響
- 時尚妝容技巧分享
- 設計變更對項目管理的影響
- 博克服裝CAD制版說明操作手冊(共95頁)
- 光電效應測普朗克常數-實驗報告
- 110千伏變電站工程檢測試驗項目計劃
- 《鐵路貨物運價規則》
- YD_T 3956-2021 電信網和互聯網數據安全評估規范_(高清版)
- (完整版)數學常用英文詞匯
- 完整word版醫院外包業務管理質量安全評估報告內部審計報告及工作改進實例
- (完整word版)數據模型與決策課程案例分析
- 最新《消費者行為學》綜合練習
- 調崗調薪實操指引PPT課件
- 凹版印刷技術與凹版油墨PPT優秀課件
評論
0/150
提交評論