2022年河南省鞏義市市直高中高考數學二模試卷含解析_第1頁
2022年河南省鞏義市市直高中高考數學二模試卷含解析_第2頁
2022年河南省鞏義市市直高中高考數學二模試卷含解析_第3頁
2022年河南省鞏義市市直高中高考數學二模試卷含解析_第4頁
2022年河南省鞏義市市直高中高考數學二模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為( )ABCD2我國古代有著輝煌的數學研究成果,其中的周髀算經、九章算術、海島算經、孫子算經、緝古算經,有豐富

2、多彩的內容,是了解我國古代數學的重要文獻這5部專著中有3部產生于漢、魏、晉、南北朝時期某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )ABCD3已知函數,為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區間中存在極值點的是( )ABCD4若是第二象限角且sin =,則=ABCD5如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,則( )A1BC2D36已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則的內切圓的半徑為( )ABCD7已知定義在上的函數,若函數為偶函數,且對任

3、意, ,都有,若,則實數的取值范圍是( )ABCD8為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為( )ABCD9定義在R上的函數,若在區間上為增函數,且存在,使得.則下列不等式不一定成立的是( )ABCD10函數的圖象大致是( )ABCD11如圖,矩形ABCD中,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:對滿足題意的任意的的位置,;對滿足題意的任意的的位置,則( ) A命題和命題都成立B命題和命題都不成立C命題成立,命題不成立D命題不成立,命題

4、成立12執行如圖所示的程序框圖,如果輸入,則輸出屬于( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13展開式中的系數為_14已知函數有且只有一個零點,則實數的取值范圍為_.15已知函數,若,則的取值范圍是_16已知全集,則_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)若數列前n項和為,且滿足(t為常數,且)(1)求數列的通項公式:(2)設,且數列為等比數列,令,.求證:.18(12分)已知函數.(1)求不等式的解集;(2)若不等式在上恒成立,求實數的取值范圍.19(12分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,(1)求數列的通項

5、公式;(2)已知數列滿足,設數列的前項和為,求大于的最小的正整數的值20(12分)如圖,設點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.21(12分)已知數列的通項,數列為等比數列,且,成等差數列.(1)求數列的通項;(2)設,求數列的前項和.22(10分)己知,.(1)求證:;(2)若,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心

6、率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,當時,當且僅當時取等號,此時,點在以為焦點的橢圓上,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:直接求出,從而求出;構造的齊次式,求出;采用離心率的定義以及圓錐曲線的定義來求解2D【解析】利用列舉法,從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果

7、.【詳解】周髀算經、九章算術、海島算經、孫子算經、緝古算經,這5部專著中有3部產生于漢、魏、晉、南北朝時期記這5部專著分別為,其中產生于漢、魏、晉、南北朝時期從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為故選D【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適

8、合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現象的發生.3A【解析】結合已知可知,可求,進而可求,代入,結合,可求,即可判斷【詳解】圖象上相鄰兩個極值點,滿足,即,且,當時,為函數的一個極小值點,而故選:【點睛】本題主要考查了正弦函數的圖象及性質的簡單應用,解題的關鍵是性質的靈活應用4B【解析】由是第二象限角且sin =知:,所以5C【解析】連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,、三點共線

9、,.故選:C. 【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.6B【解析】設左焦點的坐標, 由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內切圓的圓心分割3個三角形的面積之和可得內切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長為設內切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質及三角形的面積的求法,內切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應

10、用,屬于中檔題.7A【解析】根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意, ,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.8D【解析】過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,., ,為

11、的中點,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.9D【解析】根據題意判斷出函數的單調性,從而根據單調性對選項逐個判斷即可【詳解】由條件可得函數關于直線對稱;在,上單調遞增,且在時使得;又,所以選項成立;,比離對稱軸遠,可得,選項成立;,可知比離對稱軸遠,選項成立;,符號不定,無法比較大小,不一定成立故選:【點睛】本題考查了函數的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.10B【解析】根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據

12、導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,則的定義域為.,當,單增,當,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.11A【解析】作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,所以,所以正確.由于,所以與所成角,所以,所以正確.綜上所述,都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題12B【解析】由題意,框圖的作用是求分段函數的值域,求解即得

13、解.【詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。1330【解析】先將問題轉化為二項式的系數問題,利用二項展開式的通項公式求出展開式的第項,令的指數分別等于2,4,求出特定項的系數【詳解】由題可得:展開式中的系數等于二項式展開式中的指數為2和4時的系數之和,由于二項式的通項公式為,令,得展開式的的系數為,令,得展開式的的系數為,所以展開式中的系數,故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的

14、問題,考查學生的轉化能力,屬于基礎題14【解析】當時,轉化條件得有唯一實數根,令,通過求導得到的單調性后數形結合即可得解.【詳解】當時,故不是函數的零點;當時,即,令,當時,;當時,的單調減區間為,增區間為,又 ,可作出的草圖,如圖:則要使有唯一實數根,則.故答案為:.【點睛】本題考查了導數的應用,考查了轉化化歸思想和數形結合思想,屬于難題.15【解析】根據分段函數的性質,即可求出的取值范圍.【詳解】當時, ,當時,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.16【解析】利用集合的補集運算即可求解.【詳解】

15、由全集,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)詳見解析【解析】(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數,且),當時,得,得.由,故,故.(2)由,由為等比數列可知:,又,故,化簡得到,所以或(舍).所以,則.設的前n項和為.則,相減可得【點睛】數列的通項與前項和 的關系式,我們常利用這個關系式實現與之間的相互轉化. 數列求和關鍵看通項的結構形式,如果

16、通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續兩項的差,那么用裂項相消法;如果通項的符號有規律的出現,則用并項求和法.18(1);(2)【解析】(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數與的最小值,根據能同時成立,可得的最小值,即可求解.【詳解】(1)當時,不等式可化為,得,無解;當-2x1時,不等式可化為得x0,故01時,不等式可化為,得x2,故1x 2. 綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所

17、以所以,即實數的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數的最值,屬于中檔題.19(1)(2)4【解析】(1)利用判斷是等差數列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數.【詳解】解:任意都有,數列是等差數列,又是與的等比中項,設數列的公差為,且,則,解得,;由題意可知 ,得:,由得, 滿足條件的最小的正整數的值為【點睛】本題考查等差數列的通項公式和前項和公式及錯位相減法求和. (1)解決等差數列通項的思路(1)在等差數列中,是最基本的兩個量,一般可設出和,利用等差數列的通項公式和前項和

18、公式列方程(組)求解即可. (2)錯位相減法求和的方法:如果數列是等差數列,是等比數列,求數列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數列的公比,然后作差求解; 在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式20(1)(2)【解析】(1)先求出圓心到直線的距離為,再根據得到,解之即得a的值,再根據c=1求出b的值得到橢圓的方程.(2)先求出,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為, 又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為 .(2)由(1)得,橢圓的右準線方程為,離心率,則點到右準線的距離為,所以,即,把代入橢圓方程得,因為直線的斜率,所以, 因為直線經過和,所以直線的方程為,聯立方程組得,解得或,所以, 所以的面積.【點睛】本題主要考查直線和圓、橢圓的位置關系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學生對這些知識的掌握水平和分析推理計算能力.21(1);(2).【解析】(1)根據,成等差數列以及為等比數列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數列為等比數列,且,成等差數列.設數列的公比為,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論