2022屆云南省育能高考臨考沖刺數學試卷含解析_第1頁
2022屆云南省育能高考臨考沖刺數學試卷含解析_第2頁
2022屆云南省育能高考臨考沖刺數學試卷含解析_第3頁
2022屆云南省育能高考臨考沖刺數學試卷含解析_第4頁
2022屆云南省育能高考臨考沖刺數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是( ).ABCD2在長方體中,則直線與平面所成角的余弦值為( )ABCD3復數(為虛數單位),則等于( )A3BC2D4已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、分別為側棱,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為( )ABCD5復數(i是虛數單位)在復平面內對應的點在( )A第一象限B第二象限C第三象限D第四象限6

3、已知 若在定義域上恒成立,則的取值范圍是( )ABCD7在直三棱柱中,己知,則異面直線與所成的角為( )ABCD8已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為ABCD9若(12ai)i1bi,其中a,bR,則|abi|()ABCD510若復數,則( )ABCD2011設、分別是定義在上的奇函數和偶函數,且,則( )AB0C1D312已知,且,則在方向上的投影為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13曲線在處的切線的斜率為_.14已知函數的定義域為R,導函數為,若,且,則滿足的x的取值范圍為_.15在平面直角坐

4、標系中,點在曲線:上,且在第四象限內已知曲線在點處的切線為,則實數的值為_16已知向量,若向量與共線,則_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列(2)令,求數列的前項和.18(12分)已知函數(1)若,試討論的單調性;(2)若,實數為方程的兩不等實根,求證:.19(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.20(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,是線段的中點.()求證:平面;()若,求直線與平面所成角的正弦值.21(12分)在世界讀書日期間,某地區調查組對居民

5、閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮居民農村居民合計經常閱讀10030不經常閱讀合計200(2)從該地區城鎮居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822(10分)在中,.已知分別是的中點.將沿折起

6、,使到的位置且二面角的大小是60,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】易得,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.2C【解析】在長方體中, 得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角

7、,在,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.3D【解析】利用復數代數形式的乘除運算化簡,從而求得,然后直接利用復數模的公式求解.【詳解】,所以,故選:D.【點睛】該題考查的是有關復數的問題,涉及到的知識點有復數的乘除運算,復數的共軛復數,復數的模,屬于基礎題目.4D【解析】如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球

8、的半徑為,在中,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.5B【解析】利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.6C【解析】先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【

9、詳解】,先解不等式.當時,由,得,解得,此時;當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,則,此時;當時,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.7C【解析】由條件可看出,則為異面直線與所成的角,可證得三角形中,解得從而得出異面直線與所成的角【詳解】連接,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,面,又,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查

10、了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題8B【解析】直線的傾斜角為,易得設雙曲線C的右焦點為E,可得中,則,所以雙曲線C的離心率為.故選B9C【解析】試題分析:由已知,2ai1bi,根據復數相等的充要條件,有a,b1所以|abi|,選C考點:復數的代數運算,復數相等的充要條件,復數的模10B【解析】化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數的運算,復數的模,意在考查學生的計算能力.11C【解析】先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,用替換,得 ,化簡得,即令,所以,故選C。【點睛】本題主要考查

11、函數性質奇偶性的應用。12C【解析】由向量垂直的向量表示求出,再由投影的定義計算【詳解】由可得,因為,所以故在方向上的投影為故選:C【點睛】本題考查向量的數量積與投影掌握向量垂直與數量積的關系是解題關鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.14【解析】構造函數,再根據條件確定為奇函數且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,令,則,故函數為奇函數,故函數在

12、上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數奇偶性、單調性以及利用函數性質解不等式,考查綜合分析求解能力,屬中檔題.15【解析】先設切點,然后對求導,根據切線方程的斜率求出切點的橫坐標,代入原函數求出切點的縱坐標,即可得出切得,最后將切點代入切線方程即可求出實數的值.【詳解】解:依題意設切點,因為,則,又因為曲線在點處的切線為,解得,又因為點在第四象限內,則,.則又因為點在切線上.所以.所以.故答案為: 【點睛】本題考查了導數的幾何意義,以及導數的運算法則和已知切線斜率求出切點坐標,本題屬于基礎題.16【解析】計算得到,根據向量平行計算得到答案.【詳解】由題意可得,

13、因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據向量平行求參數,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)【解析】(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.18(1)答案不唯一,

14、具體見解析(2)證明見解析【解析】(1)根據題意得,分與討論即可得到函數的單調性;(2)根據題意構造函數,得,參變分離得,分析不等式,即轉化為,設,再構造函數,利用導數得單調性,進而得證.【詳解】(1)依題意,當時,當時,恒成立,此時在定義域上單調遞增;當時,若,;若,;故此時的單調遞增區間為,單調遞減區間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則=,(也可代入后再求導)在上單調遞減,故對于時,總有.由此得【點

15、睛】本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.19(1);(2)或 .【解析】(1)分段討論得出函數的解析式,再分范圍解不等式,可得解集;(2)先求出函數的最小值,再建立關于的不等式,可求得實數的取值范圍.【詳解】(1)因為 ,所以當時,;當時, 無解;當時,;綜上,不等式的解集為;(2),又, 或 .【點睛】本題考查分段函數,絕對值不等式的解法,以及關于函數的存在和任意的問題,屬于中檔題.20()證明見詳解;().【解析】()取中點為,根據幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;()以為坐標原點,建立空間直角坐標系,求得直線的

16、方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】()取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.()因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設,則,所以,.所以,.設平面的法向量為,則所以可取.設直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.21(1)見解析,有99%的把握認為經常閱讀與居民居住地有關

17、.(2)【解析】(1)根據題意填寫列聯表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數據可得經常閱讀的人的概率是,則,根據二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)根據樣本估計,從該地區城鎮居民中隨機抽取1人,抽到經常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數學期望的計算,考查運算求解能力,屬于基礎題22(1)證明見解析(2)45【解析】(1)設的中點為,連接,設的中點為,連接,從而即為二面角的平面角,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論