隨機變量及其分布列復習卷含答案_第1頁
隨機變量及其分布列復習卷含答案_第2頁
隨機變量及其分布列復習卷含答案_第3頁
隨機變量及其分布列復習卷含答案_第4頁
隨機變量及其分布列復習卷含答案_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、選修2-3 第二章隨機變量及其分布復習卷 一、選擇題:1.一工廠生產的100個產品中有90個一等品,10個二等品,現從這批產品中抽取4個,則其中恰好有一個二等品的概率為: ( D ) A. B. C. D. 2.甲,乙兩個工人在同樣的條件下生產,日產量相等,每天出廢品的情況如下表所列,則有結論: ( B ) 工人甲乙廢品數01230123概率0.40.30.20.10.20.60.20A 甲的產品質量比乙的產品質量好一些; B乙的產品質量比甲的產品質量好一些; C 兩人的產品質量一樣好; D無法判斷誰的質量好一些;3.在10支鉛筆中,有8支正品,2只次品,從中任取2支,則在第一次抽的是次品的條

2、件下,第二次抽得是正品的概率是( B ) A. B. C. D. 4一袋中有5個白球,3個紅球,現從袋中往外取球,每次任取一個記下顏色后放回,直到紅球出現10次時停止,設停止時共取了次球,則P(=12)等于( B ) 5已知隨機變量X的分布列為P(X =k)=,k=1,2,3,則D(3X +5)等于 ( A )A6 B9 C3 D46. 口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以X表示取出球的最大號碼,則 ( C ) A4 B5 C4.5 D4.757某人射擊一次擊中目標的概率為,經過3次射擊,此人至少有兩次擊中目標的概率為 ( A ) A B C D 8. .甲、乙兩人進行乒

3、乓球比賽,比賽規則為“3局2勝”,即以先贏2局者為勝根據經驗,每局比賽中甲獲勝的概率為06,則本次比賽甲獲勝的概率是 ( D) A. 0216 B.036 C.0432 D.06489. .將三顆骰子各擲一次,設事件A=“三個點數都不相同”,B=“至少出現一個6點”,則 概率等于: ( A ) A B C D 10.從1,2,9這九個數中,隨機抽取3個不同的數,則這3個數的和為偶數的概率是 ( C)A B C D二、填空題11.若隨機變量X服從兩點分布,且成功概率為0.7;隨機變量Y服從二項分布,且YB(10,0.8),則EX,DX,EY,DY分別是 , , , . 12. 設,當在內取值的概

4、率與在內取值的概率相等時,413兩臺獨立在兩地工作的雷達,每臺雷達發現飛行目標的概率分別為0.9和0.85,則恰有1臺雷達發現飛行目標的概率為0.22 14.已知某工廠生產的某種型號卡車輪胎的使用壽命(單位:)服從正態分布.一汽車公司一次從該廠買了500個輪胎,利用正態分布估計使用壽命在36203248273620324827范圍內的輪胎個數是 477 .15. 10某射手射擊1次,擊中目標的概率是0.9 .她連續射擊4次,且各次射擊是否擊中目標相互之間沒有影響.有下列結論:他第3次擊中目標的概率是0.9;他恰好擊中目標3次的概率是;他至少擊中目標1次的概率是.其中正確結論的序號是_ _。(寫

5、出所有正確結論的序號).三、解答題:16.為了解甲、乙兩廠的產品質量,采用分層抽樣的方法從甲、乙兩廠生產的產品中分別抽出取14件和5 件,測量產品中的微量元素的含量(單位:毫克).下表是乙廠的5件產品的測量數據:編號12345x169178166175180y7580777081()已知甲廠生產的產品共有98件,求乙廠生產的產品數量;()當產品中的微量元素x , y滿足x175,且y75時,該產品為優等品。用上述樣本數據估計乙廠生產的優等品的數量;()從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優等品數的分布列及其均值(即數學期望).16.【解析】()乙廠生產的產品數量為件.

6、()樣本中滿足x175,且y75的產品有件,故樣本頻率為,則可估計乙廠生產的優等品數量為件.()的可能取值為,且,故的分布列為的數學期望.17.某項考試按科目、科目依次進行,只有當科目成績合格時,才可繼續參加科目的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現某人參加這項考試,科目每次考試成績合格的概率均為,科目每次考試成績合格的概率均為.假設各次考試成績合格與否均不影響.(1) 求他不需要補考就可獲得證書的概率;(2) 在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為,求的分布列和數學期望.17. 解:設“科目A第一次考試合格”為事件A1,“科目

7、A補考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補考合格”為事件B2. ()不需要補考就獲得證書的事件為A1B1,注意到A1與B1相互獨立,則. ()由已知得,2,3,4,注意到各事件之間的獨立性與互斥性,可得,故18. (14分)設進入某商場的每一位顧客購買甲種商品的概率為,購買乙種商品的概率為,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的。 (1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率; (2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率; (3)記表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數,求的分布

8、列及期望。18. 【解析】記表示事件:進入商場的1位顧客購買甲種商品, 記表示事件:進入商場的1位顧客購買乙種商品,記表示事件:進入商場的1位顧客購買甲、乙兩種商品中的一種,記表示事件:進入商場的1位顧客至少購買甲、乙兩種商品中的一種。(2分) (1) (6分) (2) (9分)(3),故的分布列 所以 (12分)19.(本小題滿分12分)某連鎖超市有、兩家分店,對該超市某種商品一個月30天的銷售量進行統計:分店的銷售量為200件和300件的天數各有15天;分店的統計結果如下表:銷售量(單位:件)200300400天 數10155(1)根據上面統計結果,求出分店銷售量為200件、300件、40

9、0件的頻率;(2)已知每件該商品的銷售利潤為1元,表示超市、兩分店某天銷售該商品的利潤之和,若以頻率作為概率,且、兩分店的銷售量相互獨立,求的分布列和數學期望.19. 解:(1)B分店銷售量為200件、300件、400件的頻率分別為,和 3分(2)A分店銷售量為200件、300件的頻率均為, 4分的可能值為400,500,600,700,且 5分P(=400)=, P(=500)=,P(=600)=, P(=700)=, 9分的分布列為400500600700P10分=400+500+600+700=(元) 12分20.甲、乙、丙三人分別獨立的進行某項技能測試,已知甲能通過測試的概率是,甲、乙、丙三人都能通過測試的概率是,甲、乙、丙三人都不能通過測試的概率是,且乙通過測試的概率比丙大。()求乙、丙兩人各自通過測試的概率分別是多少;()求測試結束后通過的人數的數學期望。20.解:()設乙、丙兩人各自通過測試的概率分別是、依題意得:即 或 (舍去)所以乙、丙兩人各自通過測試的概率分別是、. ()因為 ;所以21.袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p (1) 從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止(i)求恰好摸5次停止的概率;(ii)記5次之內(含5次)摸到紅球的次數為X,求隨機變量X的分布率及數學期望E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論