圓的方程知識點總結和典型例題_第1頁
圓的方程知識點總結和典型例題_第2頁
圓的方程知識點總結和典型例題_第3頁
圓的方程知識點總結和典型例題_第4頁
圓的方程知識點總結和典型例題_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選優質文檔-傾情為你奉上圓的方程知識點總結和經典例題1圓的定義及方程定義平面內與定點的距離等于定長的點的集合(軌跡)標準方程(xa)2(yb)2r2(r0)圓心:(a,b),半徑:r一般方程x2y2DxEyF0(D2E24F0)圓心:,半徑:注意點(1)求圓的方程需要三個獨立條件,所以不論是設哪一種圓的方程都要列出系數的三個獨立方程(2)對于方程x2y2DxEyF0表示圓時易忽視D2E24F0這一條件2點與圓的位置關系點M(x0,y0)與圓(xa)2(yb)2r2的位置關系:(1)若M(x0,y0)在圓外,則(x0a)2(y0b)2r2.(2)若M(x0,y0)在圓上,則(x0a)2(y0b

2、)2r2.(3)若M(x0,y0)在圓內,則(x0a)2(y0b)2r2.3直線與圓的位置關系(1)直線與圓的位置關系的判斷方法設直線l:AxByC0(A2B20),圓:(xa)2(yb)2r2(r>0),d為圓心(a,b)到直線l的距離,聯立直線和圓的方程,消元后得到的一元二次方程的判別式為.方法位置關系幾何法代數法相交d<r>0相切dr0相離d>r<01幾何法:由圓心到直線的距離d與圓的半徑r的大小關系判斷2代數法:根據直線方程與圓的方程組成的方程組解的個數來判斷3直線系法:若直線恒過定點,可通過判斷點與圓的位置關系來判斷直線與圓的位置關系,但有一定的局限性,

3、必須是過定點的直線系(2)過一點的圓的切線方程的求法1當點在圓上時,圓心與該點的連線與切線垂直,從而求得切線的斜率,用直線的點斜式方程可求得圓的切線方程2若點在圓外時,過這點的切線有兩條,但在用設斜率來解題時可能求出的切線只有一條,這是因為有一條過這點的切線的斜率不存在(3)求弦長常用的三種方法1利用圓的半徑r,圓心到直線的距離d,弦長l之間的關系r2d22解題2利用交點坐標若直線與圓的交點坐標易求出,求出交點坐標后,直接用兩點間距離公式計算弦長3利用弦長公式設直線l:ykxb,與圓的兩交點(x1,y1),(x2,y2),將直線方程代入圓的方程,消元后利用根與系數的關系得弦長l|x1x2|.4

4、. 圓與圓的位置關系(1)圓與圓位置關系的判斷方法設圓O1:(xa1)2(yb1)2r(r1>0),圓O2:(xa2)2(yb2)2r(r2>0)方法位置關系幾何法:圓心距d與r1,r2的關系代數法:兩圓方程聯立組成方程組的解的情況外離d>r1r2無解外切dr1r2一組實數解相交|r1r2|<d<r1r2兩組不同的實數解內切d|r1r2|(r1r2)一組實數解內含0d<|r1r2|(r1r2)無解易誤點:兩圓相切問題易忽視分兩圓內切與外切兩種情形1判斷兩圓的位置關系或利用兩圓的位置關系求參數的取值范圍有以下幾個步驟:(1)化成圓的標準方程,寫出圓心和半徑;(

5、2)計算兩圓圓心的距離d;(3)通過d,r1r2,|r1r2|的關系來判斷兩圓的位置關系或求參數的范圍,必要時可借助于圖形,數形結合2應用幾何法判定兩圓的位置關系或求字母參數的范圍是非常簡單清晰的,要理清圓心距與兩圓半徑的關系(2)兩圓相交有關問題1圓系方程一般地過圓C1:x2y2D1xE1yF10與圓C2:x2y2D2xE2yF20交點的圓的方程可設為:x2y2D1xE1yF1(x2y2D2xE2yF2)0(1),然后再由其他條件求出,即可得圓的方程2兩圓相交時,公共弦所在的直線方程若圓C1:x2y2D1xE1yF10與圓C2:x2y2D2xE2yF20相交,則兩圓公共弦所在直線的方程為(D

6、1D2)x(E1E2)yF1F20.3公共弦長的求法(1)代數法:將兩圓的方程聯立,解出交點坐標,利用兩點間的距離公式求出弦長(2)幾何法:求出公共弦所在直線的方程,利用圓的半徑、半弦長、弦心距構成的直角三角形,根據勾股定理求解5. 對稱問題(1)點關于點成中心對稱通常利用中點坐標公式點 P(x,y)關于Q(a,b)的對稱點為P'(2ax,2by). (2)點關于直線成軸對稱(3)曲線關于點、曲線關于直線成中心對稱或軸對稱6. 與圓有關的最值問題的常見解法(1)形如形式的最值問題,可轉化為動直線斜率的最值問題(2)形如taxby形式的最值問題,可轉化為動直線截距的最值問題(3)形如(x

7、a)2(yb)2形式的最值問題,可轉化為動點到定點的距離的平方的最值問題 7. 典型例題1. 直線3x4y50與圓x2y21的位置關系是()A相交B相切C相離D無法判斷【解析】圓心(0,0)到直線3x4y50的距離d1,又圓x2y21的半徑r1,dr,故直線與圓相切2. 直線3x4y120與圓(x1)2(y1)29的位置關系是()A過圓心B相切C相離D相交但不過圓心【解析】圓心(1,1)到直線3x4y120的距離dr.【答案】D3. 求過點(1,7)且與圓x2y225相切的直線方程【解析】由題意知切線斜率存在,設切線的斜率為k,則切線方程為y7k(x1),即kxyk70.5,解得k或k.所求切

8、線方程為y7(x1)或y7(x1),即4x3y250或3x4y250.4. 過點A(4,3)作圓C:(x3)2(y1)21的切線,求此切線的方程. 【解析】因為(43)2(31)2171,所以點A在圓外(1)若所求切線的斜率存在,設切線斜率為k,則切線方程為y3k(x4)因為圓心C(3,1)到切線的距離等于半徑,半徑為1,所以1,即|k4|,所以k28k16k21,解得k.所以切線方程為y3(x4),即15x8y360.(2)若直線斜率不存在,圓心C(3,1)到直線x4的距離也為1,這時直線與圓也相切,所以另一條切線方程是x4.綜上,所求切線方程為15x8y360或x4.5. 求直線l:3xy

9、60被圓C:x2y22y40截得的弦長【解析】圓C:x2y22y40可化為x2(y1)25,其圓心坐標為(0,1),半徑r.點(0,1)到直線l的距離為d,l2,所以截得的弦長為.6. 直線x2y50被圓x2y22x4y0截得的弦長為()A1B2C4D4【解析】圓的方程可化為C:(x1)2(y2)25,其圓心為C(1,2),半徑r.如圖所示,取弦AB的中點P,連接CP,則CPAB,圓心C到直線AB的距離d|CP|1.在RtACP中,|AP|2,故直線被圓截得的弦長|AB|4.7. 兩圓x2y29和x2y28x6y90的位置關系是()A外離B相交C內切D外切【解析】兩圓x2y29和x2y28x6

10、y90的圓心分別為(0,0)和(4,3),半徑分別為3和4.所以兩圓的圓心距d5.又43<5<34,故兩圓相交8. 圓O1:x2y22x0和圓O2:x2y24y0的位置關系為()A外離B相交C外切D內切【解析】圓O1的圓心坐標為(1,0),半徑長r11;圓O2的圓心坐標為(0,2),半徑長r22;1r2r1|O1O2|r1r23,即兩圓相交9. 求兩圓x2y22x10y240和x2y22x2y80的公共弦所在直線的方程及公共弦長【解析】聯立兩圓的方程得方程組兩式相減得x2y40,此為兩圓公共弦所在直線的方程法一:設兩圓相交于點A,B,則A,B兩點滿足方程組解得或所以|AB|2,即公

11、共弦長為2.法二:由x2y22x10y240,得(x1)2(y5)250,其圓心坐標為(1,5),半徑長r5,圓心到直線x2y40的距離為d3.設公共弦長為2l,由勾股定理得r2d2l2,即50(3)2l2,解得l,故公共弦長2l2.10. 求圓C1:x2y21與圓C2:x2y22x2y10的公共弦所在直線被圓C3:(x1)2(y1)2所截得的弦長【精彩點撥】【解析】設兩圓的交點坐標分別為A(x1,y1),B(x2,y2),則A,B的坐標是方程組的解,兩式相減得xy10.因為A,B兩點的坐標滿足 xy10,所以AB所在直線方程為xy10,即C1,C2的公共弦所在直線方程為xy10,圓C3的圓心

12、為(1,1),其到直線AB的距離d,由條件知r2d2,所以直線AB被圓C3截得弦長為2×.11. 已知圓C與圓(x1)2y21關于直線yx對稱,則圓C的方程為()A(x1)2y21Bx2y21Cx2(y1)21Dx2(y1)21【解析】由已知圓(x1)2y21得圓心C1(1,0),半徑長r11.設圓心C1(1,0關于直線yx對稱的點為(a,b),則解得所以圓C的方程為x2(y1)21.12. 當動點P在圓x2y22上運動時,它與定點A(3,1)連線中點Q的軌跡方程為_【解析】設Q(x,y),P(a,b),由中點坐標公式得所以點P(2x3,2y1)滿足圓x2y22的方程,所以(2x3)

13、2(2y1)22,化簡得22,即為點Q的軌跡方程13. (1)ABC的頂點坐標分別是A(5,1),B(7,3),C(2,8),求它的外接圓的方程;(2)ABC的頂點坐標分別是A(0,0),B(5,0),C(0,12),求它的內切圓的方程【解答】解:(1)設所求圓的方程為(xa)2+(yb)2=r2,因為A(5,1),B(7,3),C(2,8)都在圓上,所以它們的坐標都滿足方程,于是,可解得a=2,b=3,r=25,所以ABC的外接圓的方程是(x2)2+(y+3)2=25(2)ABC三個頂點坐標分別為A(0,0),B(5,0),C(0,12),ABAC,AB=5,AC=12,BC=13,ABC內切圓的半徑r=2,圓心(2,2),ABC內切圓的方程為(x2)2+(y2)2=414. 已知圓C:x2+(y+1)2=5,直線l:mxy+1=0(mR)(1)判斷直線l與圓C的位置關系;(2)設直線l與圓C交于A、B兩點,若直線l的傾斜角為120°,求弦AB的長【解答】解:(1)由于直線l的方程是mxy+1=0,即 y1=mx,經過定點H(0,1),而點H到圓心C(0,1)的距離為2,小于半徑,故點H在圓的內部,故直線l與圓C相交,故直線和圓恒有兩個交點(2)直線l的傾斜角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論