北師大版數學八年級知識點總結_第1頁
北師大版數學八年級知識點總結_第2頁
北師大版數學八年級知識點總結_第3頁
北師大版數學八年級知識點總結_第4頁
北師大版數學八年級知識點總結_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、北師大版數學(八年級上冊)知識點總結第一章 勾股定理1、勾股定理直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即2、勾股定理的逆定理如果三角形的三邊長a,b,c有關系,那么這個三角形是直角三角形。3、勾股數:滿足的三個正整數,稱為勾股數。第二章 實數一、實數的概念及分類 1、實數的分類 正有理數 有理數 零 有限小數和無限循環(huán)小數實數 負有理數 正無理數 無理數 無限不循環(huán)小數 負無理數2、無理數:無限不循環(huán)小數叫做無理數。在理解無理數時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:(1)開方開不盡的數,如等;(2)有特定意義的數,如圓周率,或化簡后含有的數,如+8等;(3)有特定結構的

2、數,如0.1010010001等;(4)某些三角函數值,如sin60o等二、實數的倒數、相反數和絕對值 1、相反數實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=b,反之亦成立。2、絕對值在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|0)。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a0;若|a|=-a,則a0。3、倒數如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。4、數軸規(guī)定了原點、正方向和單位

3、長度的直線叫做數軸(畫數軸時,要注意上述規(guī)定的三要素缺一不可)。解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。5、估算三、平方根、算數平方根和立方根 1、算術平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。表示方法:記作“”,讀作根號a。性質:正數和零的算術平方根都只有一個,零的算術平方根是零。2、平方根:一般地,如果一個數x的平方等于a,即x2=a,那么這個數x就叫做a的平方根(或二次方根)。表示方法:正數a的平方根記做“”,讀作“正、負根號a”。性質:一個正數有兩個平方根,它們互為相反數

4、;零的平方根是零;負數沒有平方根。開平方:求一個數a的平方根的運算,叫做開平方。 注意的雙重非負性: 03、立方根一般地,如果一個數x的立方等于a,即x3=a那么這個數x就叫做a 的立方根(或三次方根)。表示方法:記作性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。注意:,這說明三次根號內的負號可以移到根號外面。四、實數大小的比較 1、實數比較大小:正數大于零,負數小于零,正數大于一切負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。2、實數大小比較的幾種常用方法(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。(2)求差比較

5、:設a、b是實數,(3)求商比較法:設a、b是兩正實數,(4)絕對值比較法:設a、b是兩負實數,則。(5)平方法:設a、b是兩負實數,則。五、算術平方根有關計算(二次根式)1、含有二次根號“”;被開方數a必須是非負數。2、性質:(1) (2) (3) ()(4) ()3、運算結果若含有“”形式,必須滿足:(1)被開方數的因數是整數,因式是整式;(2)被開方數中不含能開得盡方的因數或因式六、實數的運算 (1)六種運算:加、減、乘、除、乘方 、開方(2)實數的運算順序先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運算律加法交換律 加法結合律 乘法交換律 乘法結合律 乘法

6、對加法的分配律 第三章 圖形的平移與旋轉一、平移 1、定義在平面內,將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。2、性質平移前后兩個圖形是全等圖形,對應點連線平行且相等,對應線段平行且相等,對應角相等。二、旋轉 1、定義在平面內,將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角。2、性質旋轉前后兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等于旋轉角。第四章 四邊形性質探索一、四邊形的相關概念 1、四邊形在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。2、四邊

7、形具有不穩(wěn)定性3、四邊形的內角和定理及外角和定理四邊形的內角和定理:四邊形的內角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。推論:多邊形的內角和定理:n邊形的內角和等于180°; 多邊形的外角和定理:任意多邊形的外角和等于360°。6、設多邊形的邊數為n,則多邊形的對角線共有條。從n邊形的一個頂點出發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。二、平行四邊形 1、平行四邊形的定義兩組對邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質(1)平行四邊形的對邊平行且相等。(2)平行四邊形相鄰的角互補,對角相等(3)平行四邊

8、形的對角線互相平分。(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。(2)推論:夾在兩條平行線間的平行線段相等。3、平行四邊形的判定(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形(5)定理4:一組對邊平行且相等的四邊形是平行四邊形4、兩條平行線的距離兩條平行線中,一條直線上的任意一點到另一條直線的距離

9、,叫做這兩條平行線的距離。平行線間的距離處處相等。5、平行四邊形的面積S平行四邊形=底邊長×高=ah三、矩形 1、矩形的定義有一個角是直角的平行四邊形叫做矩形。2、矩形的性質(1)矩形的對邊平行且相等(2)矩形的四個角都是直角(3)矩形的對角線相等且互相平分(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。3、矩形的判定(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形(3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積S矩形=長×寬=ab四、

10、菱形 1、菱形的定義有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(1)菱形的四條邊相等,對邊平行(2)菱形的相鄰的角互補,對角相等(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。3、菱形的判定(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形(3)定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積S菱形=底邊長×高=兩條對角線乘積的一半五、正方形 (310分) 1、正方形的定義有一組鄰邊相等并且有一個

11、角是直角的平行四邊形叫做正方形。2、正方形的性質(1)正方形四條邊都相等,對邊平行(2)正方形的四個角都是直角 (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。3、正方形的判定判定一個四邊形是正方形的主要依據是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。4、正方形的面積設正方形邊長為a,對角線長為bS正方形=六、梯形 (一) 1、梯形的相關概念一組對邊平行而另一組對邊不平行的四邊形叫做梯形。梯形中平行的兩邊叫做梯形的

12、底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。2、梯形的判定(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。(2)一組對邊平行且不相等的四邊形是梯形。(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形(三)等腰梯形1、等腰梯形的定義兩腰相等的梯形叫做等腰梯形。2、等腰梯形的性質(1)等腰梯形的兩腰相等,兩底平行。(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。(3)等腰梯形的對角線相等。(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂

13、直平分線。3、等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)(四)梯形的面積(1)如圖,(2)梯形中有關圖形的面積:;七、有關中點四邊形問題的知識點:(1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形;(2)順次連接矩形的四邊中點所得的四邊形是菱形;(3)順次連接菱形的四邊中點所得的四邊形是矩形;(4)順次連接等腰梯形的四邊中點所得的四邊形是菱形;(5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形;(6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形;(7

14、)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形;八、中心對稱圖形 1、定義在平面內,一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。2、性質(1)關于中心對稱的兩個圖形是全等形。(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。3、判定如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關系圖:第五章 位置的確定一、

15、在平面內,確定物體的位置一般需要兩個數據。二、平面直角坐標系及有關概念 1、平面直角坐標系在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。3、點的坐標的概念對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足

16、在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。平面內點的與有序實數對是一一對應的。4、不同位置的點的坐標的特征 (1)、各象限內點的坐標的特征 點P(x,y)在第一象限點P(x,y)在第二象限點P(x,y)在第三象限點P(x,y)在第四象限(2)、坐標軸上的點的特征點P(x,y)在x軸上,x為任意實數點P(x,y)在y軸上,y為任意實數點P(x,y)既在x軸上,又在y軸上x

17、,y同時為零,即點P坐標為(0,0)即原點(3)、兩條坐標軸夾角平分線上點的坐標的特征點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(4)、和坐標軸平行的直線上點的坐標的特征位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。(5)、關于x軸、y軸或原點對稱的點的坐標的特征點P與點p關于x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P(x,-y)點P與點p關于y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P(-x,y)點P與點p關于原點對

18、稱橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P(-x,-y)(6)、點到坐標軸及原點的距離點P(x,y)到坐標軸及原點的距離:(1)點P(x,y)到x軸的距離等于(2)點P(x,y)到y(tǒng)軸的距離等于(3)點P(x,y)到原點的距離等于三、坐標變化與圖形變化的規(guī)律:坐標( x , y )的變化 圖形的變化 x × a或 y × a 被橫向或縱向拉長(壓縮)為原來的 a倍 x × a, y × a 放大(縮?。樵瓉淼?a倍 x ×( -1)或 y ×( -1) 關于 y 軸或 x 軸對稱 x ×( -1), y

19、 ×( -1) 關于原點成中心對稱 x +a或 y+ a 沿 x 軸或 y 軸平移 a個單位 x +a, y+ a 沿 x 軸平移 a個單位,再沿 y 軸平移 a個單第六章 一次函數一、函數:一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。二、自變量取值范圍使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。三、函數的三種表示法及其優(yōu)缺點(1)關系式(解析)法兩個變量間的函數關系,有時可以用一個含有

20、這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。(2)列表法把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。(3)圖象法用圖象表示函數關系的方法叫做圖象法。四、由函數關系式畫其圖像的一般步驟(1)列表:列表給出自變量與函數的一些對應值(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。五、正比例函數和一次函數 1、正比例函數和一次函數的概念一般地,若兩個變量x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別

21、地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。2、一次函數的圖像: 所有一次函數的圖像都是一條直線3、一次函數、正比例函數圖像的主要特征:一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。k的符號b的符號函數圖像圖像特征k>0b>0 y 0 x圖像經過一、二、三象限,y隨x的增大而增大。b<0 y 0 x圖像經過一、三、四象限,y隨x的增大而增大。K<0b>0 y 0 x 圖像經過一、二、四象限,y隨x的增大而減小b<0 y 0 x 圖像經過二、三、四象限,y隨x的增大而減小。注:當b=0時,一次

22、函數變?yōu)檎壤瘮担壤瘮凳且淮魏瘮档奶乩?、正比例函數的性質一般地,正比例函數有下列性質:(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。5、一次函數的性質一般地,一次函數有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小6、正比例函數和一次函數解析式的確定確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。7、一次函數與一元一次方程的關系: 任何

23、一個一元一次方程都可轉化為:kx+b=0(k、b為常數,k0)的形式 而一次函數解析式形式正是y=kx+b(k、b為常數,k0)當函數值為0時,即kx+b=0就與一元一次方程完全相同 結論:由于任何一元一次方程都可轉化為kx+b=0(k、b為常數,k0)的形式所以解一元一次方程可以轉化為:當一次函數值為0時,求相應的自變量的值 從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值第七章 二元一次方程組1、二元一次方程含有兩個未知數,并且所含未知數的項的次數都是1的整式方程叫做二元一次方程。2、二元一次方程的解適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。3、

24、二元一次方程組含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。4二元一次方程組的解二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。5、二元一次方程組的解法(1)代入(消元)法(2)加減(消元)法6、一次函數與二元一次方程(組)的關系:(1)一次函數與二元一次方程的關系:直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解(2)一次函數與二元一次方程組的關系:二元一次方程組 的解可看作兩個一次函數 和 的圖象的交點。當函數圖象有交點時,說明相應的二元一次方程組有解;當函數圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。第八章

25、數據的代表1、刻畫數據的集中趨勢(平均水平)的量:平均數 、眾數、中位數 2、平均數(1)平均數:一般地,對于n個數我們把叫做這n個數的算術平均數,簡稱平均數,記為。(2)加權平均數: 3、眾數一組數據中出現(xiàn)次數最多的那個數據叫做這組數據的眾數。4、中位數一般地,將一組數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。新北師大版數學(八年級下冊)知識點總結第一章 三角形的證明1、等腰三角形(1)三角形全等的性質及判定全等三角形的對應邊相等,對應角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性質及推論性質:等腰三角形的兩個底角相

26、等(等邊對等角)判定:有兩個角相等的三角形是等腰三角形(等角對等邊)推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)(3)等邊三角形的性質及判定定理性質定理:等邊三角形的三個角都相等,并且每個角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質;等邊三角形是軸對稱圖形,有3條對稱軸。判定定理:有一個角是60度的等腰三角形是等邊三角形。或者三個角都相等的三角形是等邊三角形。(4)含30度的直角三角形的邊的性質定理:在直角三角形中,如果一個銳角等于30度,那么它所對的直角邊等于斜邊的一半。2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的兩條直角邊的平方

27、和等于斜邊的平方。逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。(2)命題包括已知和結論兩部分;逆命題是將倒是的已知和結論交換;正確的逆命題就是逆定理。(3)直角三角形全等的判定定理定理:斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)3、線段的垂直平分線(1)線段垂直平分線的性質及判定性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。判定:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上。(2)三角形三邊的垂直平分線的性質三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等。(3)如何用尺規(guī)作圖法作線段的垂直平分線分別以線段的兩個端

28、點A、B為圓心,以大于AB的一半長為半徑作弧,兩弧交于點M、N;作直線MN,則直線MN就是線段AB的垂直平分線。4、角平分線(1)角平分線的性質及判定定理性質:角平分線上的點到這個角的兩邊的距離相等;判定:在一個角的內部,且到角的兩邊的距離相等的點,在這個角的平分線上。(2)三角形三條角平分線的性質定理性質:三角形的三條角平分線相交于一點,并且這一點到三條邊的距離相等。(3)如何用尺規(guī)作圖法作出角平分線第二章 一元一次不等式和一元一次不等式組一. 不等關系1. 一般地,用符號“<”(或“”), “>”(或“”)連接的式子叫做不等式.¤2. 要區(qū)別方程與不等式: 方程表示的

29、是相等的關系;不等式表示的是不相等的關系.3. 準確“翻譯”不等式,正確理解“非負數”、“不小于”等數學術語.非負數 <=> 大于等于0(0) <=> 0和正數 <=> 不小于0非正數 <=> 小于等于0(0) <=> 0和負數 <=> 不大于0二. 不等式的基本性質 三. 不等式的解集:1. 能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.¤3. 不等式的解集在數

30、軸上的表示:用數軸表示不等式的解集時,要確定邊界和方向: 邊界:有等號的是實心圓圈,無等號的是空心圓圈;方向:大向右,小向左四. 一元一次不等式:1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.3. 解一元一次不等式的步驟:去分母; 去括號; 移項; 合并同類項; 系數化為1(不等號的改變問題)4. 不等式應用的探索(利用不等式解決實際問題)列不等式解應用題基本步驟與列方程解應用題相類似,即:審: 認真審題,找出題中的不等關系,要抓

31、住題中的關鍵字眼,如“大于”、“小于”、“不大于”、“不小于”等含義;設: 設出適當的未知數;列: 根據題中的不等關系,列出不等式;解: 解出所列的不等式的解集;答: 寫出答案,并檢驗答案是否符合題意.五. 一元一次不等式與一次函數六. 一元一次不等式組1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.幾個不等式解集的公共部分,通常是利用數軸來確定.3. 解一元一次不等式組的步驟:(1)分別求出不等式組中各個不等式的解集;(2)利用

32、數軸求出這些解集的公共部分,即這個不等式組的解集.兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)一元一次不等式解集圖示敘述語言表達x>b兩大取較大x>a兩小取小a<x<b大小交叉中間找無解在大小分離沒有解(是空集)第三章 圖形的平移與旋轉一、平移 1、定義在平面內,將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。2、性質平移前后兩個圖形是全等圖形,對應點連線平行且相等,對應線段平行且相等,對應角相等。二、旋轉 1、定義在平面內,將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角

33、。2、性質旋轉前后兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等于旋轉角。第四章 分解因式一. 分解因式1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.2. 因式分解與整式乘法是互逆關系.因式分解與整式乘法的區(qū)別和聯(lián)系:(1)整式乘法是把幾個整式相乘,化為一個多項式;(2)因式分解是把一個多項式化為幾個因式相乘.二. 提公共因式法1. 如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法. 如: 2. 概念內涵:(1)因式分解的最后結果應當是“積”;(2)

34、公因式可能是單項式,也可能是多項式;(3)提公因式法的理論依據是乘法對加法的分配律,即: 3. 易錯點點評:(1)注意項的符號與冪指數是否搞錯;(2)公因式是否提“干凈”;(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.三. 運用公式法1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.2. 主要公式:(1)平方差公式: (2)完全平方公式: ¤3. 易錯點點評:因式分解要分解到底.如就沒有分解到底.4. 運用公式法:(1)平方差公式: 應是二項式或視作二項式的多項式;二項式的每項(不含符號)都是一個單項式(或多項式)的平

35、方;二項是異號.(2)完全平方公式:應是三項式;其中兩項同號,且各為一整式的平方; 還有一項可正負,且它是前兩項冪的底數乘積的2倍.5. 因式分解的思路與解題步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;(4)因式分解的最后結果必須是幾個整式的乘積,否則不是因式分解;(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.四. 十字相乘法:1.對于二次三項式,將a和c分別分解成兩個因數的乘積, , , 且滿足,往往寫成 的形式,將二次三項式進行分解. 如: 2. 二次三項

36、式的分解: 3. 規(guī)律內涵:(1)理解:把分解因式時,如果常數項q是正數,那么把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.(2)如果常數項q是負數,那么把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對于分解的兩個因數,還要看它們的和是不是等于一次項系數p.4. 易錯點點評:(1)十字相乘法在對系數分解時易出錯;(2)分解的結果與原式不等,這時通常采用多項式乘法還原后檢驗分解的是否正確.第五章 分式一. 分式1. 兩個整數不能整除時,出現(xiàn)了分數;類似地,當兩個整式不能整除時,就出現(xiàn)了分式. 整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么稱為分式,對于任意一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論