微積分大一基礎知識經典講解_第1頁
微積分大一基礎知識經典講解_第2頁
微積分大一基礎知識經典講解_第3頁
微積分大一基礎知識經典講解_第4頁
微積分大一基礎知識經典講解_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Chapter1 Functions(函數)1.Definition 1)Afunction f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B.2)The set A is called the domain(定義域) of the function.3)The range(值域) of f is the set of all possible values of f(x) as x varies through out the domain.2.

2、Basic Elementary Functions(基本初等函數)1) constant functionsf(x)=c2) power functions3) exponential functions domain: R range: 4) logarithmic functions domain: range: R5) trigonometric functionsf(x)=sinx f(x)=cosx f(x)=tanx f(x)=cotx f(x)=secx f(x)=cscx6) inverse trigonometric functionsdomainrangegraphf(x

3、)=arcsinx or f(x)=arccosx or f(x)=arctanx or Rf(x)=arccotx or R3. DefinitionGiven two functions f and g, the composite function(復合函數) is defined byNote 2 / 8Example If find each function and its domain. 4.Definition An elementary function(初等函數) is constructed using combinations(addition加, subtractio

4、n減, multiplication乘, division除) and compositionstarting with basic elementary functions.Example is an elementary function. is an elementary function.1)Polynomial(多項式) Functions where n is a nonnegative integer.The leading coefficient(系數) The degree of the polynomial is n.In particular(特別地),The leadi

5、ng coefficient constant functionThe leading coefficient linear functionThe leading coefficient quadratic(二次) functionThe leading coefficient cubic(三次) function2)Rational(有理) Functions where P and Q are polynomials.3) Root Functions4.Piecewise Defined Functions(分段函數)5.6.Properties(性質)1)Symmetry(對稱性)e

6、ven function: in its domain.symmetric w.r.t.(with respect to關于) the y-axis.odd function: in its domain.symmetric about the origin.2) monotonicity(單調性)A function f is called increasing on interval(區間) I if It is called decreasing on I if 3) boundedness(有界性)4) periodicity (周期性)Example f(x)=sinxChapter

7、 2 Limits and Continuity1.Definition We write and say “f(x) approaches(tends to趨向于) L as x tends to a ”if we can make the values of f(x) arbitrarily(任意地) close to L by taking x to be sufficiently(足夠地) close to a(on either side of a) but not equal to a.Note means that in finding the limit of f(x) as

8、x tends to a, we never consider x=a. In fact, f(x) need not even be defined when x=a. The only thing that matters is how f is defined near a. 2.Limit LawsSuppose that c is a constant and the limitsexist. ThenNote From 2), we have 3. 1)2) Note4.One-Sided Limits1)left-hand limitDefinition We write and

9、 say “f(x) tends to L as x tends to a from left ”if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a.2)right-hand limitDefinition We write and say “f(x) tends to L as x tends to a from right ”if we can make the values of f(x) arbitrari

10、ly close to L by taking x to be sufficiently close to a and x greater than a.5.TheoremSolutionSolution6.Infinitesimals(無窮小量) and infinities(無窮大量)1)Definition We say f(x) is an infinitesimal as is some number or Example1 is an infinitesimal asExample2 is an infinitesimal as2)Theorem and g(x) is bounded.Note Example 3)Definition We say f(x) is an infinity as is some number

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論