




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、實驗題目 多重共線性的診斷與修正 一、實驗目的與要求:要求目的:1、對多元線性回歸模型的多重共線性的診斷; 2、對多元線性回歸模型的多重共線性的修正。二、實驗內(nèi)容根據(jù)書上第四章引子“農(nóng)業(yè)的發(fā)展反而會減少財政收入”,19782007年的財政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。三、實驗過程:(實踐過程、實踐所有參數(shù)與指標、理論依據(jù)說明等)(一)模型設(shè)定及其估計經(jīng)分析,影響財政收入的主要因素,除了農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值以外,還可能與總?cè)丝诘纫蛩赜嘘P(guān)。研究“農(nóng)業(yè)的發(fā)展反而會減少財政收入”這個問題。設(shè)定如下形式的計量
2、經(jīng)濟模型:=+其中,為財政收入CS/億元;為農(nóng)業(yè)增加值NZ/億元;為工業(yè)增加值GZ/億元;為建筑業(yè)增加值JZZ/億元;為總?cè)丝赥POP/萬人;為最終消費CUM/億元;為受災面積SZM/千公頃。圖1: 19782007年財政收入及其影響因素數(shù)據(jù)年份財政收入CS/億元農(nóng)業(yè)增加值NZ/億元工業(yè)增加值GZ/億元建筑業(yè)增加值JZZ/億元總?cè)丝赥POP/萬人最終消費CUM/億元受災面積SZM/千公頃19781132.31027.51607138.2962592239.15079019791146.41270.21769.7143.8975422633.73937019801159.91371.61996.
3、5195.5987053007.94452619811175.81559.52048.4207.11000723361.53979019821212.31777.42162.3220.71016543714.833130198313671978.42375.6270.61030084126.43471019841642.92316.12789316.71043574846.33189019852004.82564.43448.7417.91058515986.344365198621222788.73967525.71075076821.84714019872199.432334585.866
4、5.81093007804.64209019882357.23865.45777.28101110269839.55087019892664.94265.9648479411270411164.24699119902937.150626858859.411433312090.53847419913149.485342.28087.11015.111582314091.95547219923483.375866.610284.5141511717117203.35133319934348.956963.8141882266.511851721899.94882919945218.19572.71
5、9480.72964.711985029242.25504319956242.212135.824950.63728.812112136748.24582119967407.9914015.429447.64387.412238943919.54698919978651.1414441.932921.44621.612362648140.65342919989875.9514817.634018.44985.812476151588.250145199911444.081477035861.55172.112578655636.949981200013395.2314944.740036552
6、2.31267436151654688200116386.0415781.343580.65931.712762766878.352215200218903.641653747431.36465.512845371691.247119200321715.2517381.754945.57490.812922777449.554506200426396.4721412.7652108694.312998887032.937106200531649.292242076912.910133.813075696918.138818200638760.22404091310.911851.1131448
7、110595.341091200751321.7828095107367.214014.1132129128444.648992利用EV軟件,生成、等數(shù)據(jù),采用這些數(shù)據(jù)對模型進行OLS回歸。(二)診斷多重共線性1、雙擊“Eviews”,進入主頁。輸入數(shù)據(jù):點擊主菜單中的File/Open /EV WorkfileExcel多重共線性的數(shù)據(jù).xls ;2、在EV主頁界面的窗口,輸入“l(fā)s y c x2 x3 x4 x5 x6 x7”,按“Enter”.出現(xiàn)OLS回歸結(jié)果,圖2: 圖2: OLS 回歸結(jié)果Dependent Variable: YMethod: Least SquaresDate:
8、 10/12/10 Time: 17:07Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-6646.6946454.156-1.0298320.3138X2-0.9706880.330409-2.9378410.0074X31.0846540.2285214.7463970.0001X4-2.7639282.076994-1.3307350.1963X50.0776130.0679741.1418080.2653X6-0.0471190.08
9、1509-0.5780840.5688X70.0075800.0350390.2163290.8306R-squared0.994565 Mean dependent var10049.04Adjusted R-squared0.993147 S.D. dependent var12585.51S.E. of regression1041.849 Akaike info criterion16.93634Sum squared resid24965329
10、160; Schwarz criterion17.26329Log likelihood-247.0452 F-statistic701.4747Durbin-Watson stat2.167410 Prob(F-statistic)0.000000由此可見,該模型的可決系數(shù)為0.995,修正的可決系數(shù)為0.993,模型擬和很好,F(xiàn)統(tǒng)計量為701.47,模型擬和很好,回歸方程整體上顯著。但是當=0.05時,=2.069,不僅X4、X5、X6、X7的系數(shù)t檢驗不顯著,而且
11、X2、X4、X6系數(shù)的符號與預期相反,這表明很可能存在嚴重的多重共線性。(即除了農(nóng)業(yè)增加值、工業(yè)增加值外,其他因素對財政收入的影響都不顯著,且農(nóng)業(yè)增加值、建筑業(yè)增加值、最終消費的回歸系數(shù)還是負數(shù),這說明很可能存在嚴重的多重共線性。)3、計算各解釋變量的相關(guān)系數(shù):在Workfile窗口,選擇X2、X3、X4、X5、X6、X7數(shù)據(jù),點擊“Quick”Group StatisticsCorrelationsOK,出現(xiàn)相關(guān)系數(shù)矩陣,如圖3:圖3: 相關(guān)系數(shù)矩陣X2X3X4X5X6X7X210.972980614561470.9826606234997890.9279784294067450.98896
12、26197246670.226199965872465X30.9729806145614710.9985218083931880.8439002065687580.9926412367117840.129443710336215X40.9826606234997890.99852180839318810.8641521359280510.9960568434415960.154645718404353X50.9279784294067450.8439002065687580.86415213592805110.8888480555469790.387767264808787X60.988962
13、6197246670.9926412367117840.9960568434415960.88884805554697910.185172880851582X70.2261999658724650.1294437103362150.1546457184043530.3877672648087870.1851728808515821由相關(guān)系數(shù)矩陣可以看出,各解釋變量相互之間的相關(guān)系數(shù)較高,特別是農(nóng)業(yè)增加值、工業(yè)增加值、建筑業(yè)增加值、最終消費之間,相關(guān)系數(shù)都在0.8以上。這表明模型存在著多重共線性。(三)修正多重共線性1、采用逐步回歸法,去檢驗和解決多重共線性問題。分別作Y對X2、X3、X4、X5
14、、X6、X7的一元回歸,結(jié)果如下圖4:在EV主頁界面的窗口,輸入“l(fā)s y c x2”,“回車鍵”。Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.7930900.0093X21.4541860.11723512.403980.0000R-squared0.846034&
15、#160; Mean dependent var10049.04Adjusted R-squared0.840536 S.D. dependent var12585.51S.E. of regression5025.770 Akaike info criterion19.94689Sum squared resid7.07E+08 Schwarz criterion20.04030Log likelihood-297.203
16、3 F-statistic153.8588Durbin-Watson stat0.166951 Prob(F-statistic)0.000000依次如上推出X3、X4、X5、X6、X7的一元回歸。綜上所述,結(jié)果如下圖4:圖4.一元回歸估計結(jié)果變量參數(shù)估計值1.4541860.4268173.1868510.8297890.3303540.111530t統(tǒng)計量12.4039828.9016822.677336.20602518.128950.3203380.8460340.9675670.9483640
17、.5790410.9214940.0036510.8405360.9664080.9465200.5640060.918690-0.0319322、其中,加入的最大,以為基礎(chǔ),順次加入其他變量逐步回歸。結(jié)果如下圖5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.24135.089841
18、0.0000X2-1.1053390.105222-10.504860.0000X30.7219890.02887925.000560.0000R-squared0.993624 Mean dependent var10049.04Adjusted R-squared0.993152 S.D. dependent var12585.51S.E. of regression1041.474 Akaike info criterion16.82930Sum sq
19、uared resid29286057 Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durbin-Watson stat1.662637 Prob(F-statistic)0.000000依照上面,在順次加入X4、X5、X6、X7,進行逐步回歸。綜合結(jié)果如下圖5:圖5.加入新變量的回歸結(jié)果(一)變量X2X3X4X5X6X7X3,X2-1.1053390.7219890
20、.993152(-10.50486)(25.00056)X3,X41.65227-9.2557480.990547(11.46367)(-8.514941)X3,X50.514796-0.2619970.98301(26.29703)(-5.325453)X3,X60.910503-0.3864590.985025(11.18199)(-5.984236)X3,X70.430639-0.1255790.970053(30.62427)(-2.099504)經(jīng)比較,新加入的方程= 0.993152 ,改進最大, 但是得系數(shù)為負,這顯然不符題意。在的基礎(chǔ)上分別加入其他變量后發(fā)現(xiàn),的系數(shù)都為負,與預
21、期估計違背。因此這些變量都會引起嚴重的多重共線性,全部剔除,只保留。修正的回歸結(jié)果為:Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1075.289570.5337-1.8847080.0699X30.4268170.01476828.901680.0000R-squared0.967567
22、160; Mean dependent var10049.04Adjusted R-squared0.966408 S.D. dependent var12585.51S.E. of regression2306.678 Akaike info criterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402
23、 F-statistic835.3074Durbin-Watson stat0.292531 Prob(F-statistic)0.000000= -1075.289 + 0.426817(-1.884708) (28.90168)= 0.967567 =0.966408 F=835.3074這說明在其他因素不變的情況下,工業(yè)增加值每增加1億元,財政收入平均增加0.426817億元。四、實踐結(jié)果報告: 為研究“農(nóng)業(yè)的發(fā)展反而會減少財政收入”的問題,根據(jù)19782007年的財政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加
24、值等數(shù)據(jù),運用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。最后修正的回歸結(jié)果為:= -1075.289 + 0.426817(-1.884708) (28.90168)= 0.967567 =0.966408 F=835.3074這說明在其他因素不變的情況下,工業(yè)增加值每增加1億元,財政收入平均增加0.426817億元。可決系數(shù)為0.967567,較高,說明模型擬合優(yōu)度高;F值為835.3074,說明整個方程顯著;斜率系數(shù)的t值28.90168,大于t統(tǒng)計量,t檢驗顯著,符合題意。逐步回歸后的結(jié)果雖然實現(xiàn)了減輕多重共線性的目的,但反映農(nóng)業(yè)增加值,建筑業(yè)增加值的X2,X3等也一并從模
25、型中剔除出去了,可能會帶來設(shè)定偏誤,這是在使用逐步回歸時需要注意的問題。附加:1、 分別作Y對X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下:ls y c x2Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.7930900.0093X21.4541860.1172
26、3512.403980.0000R-squared0.846034 Mean dependent var10049.04Adjusted R-squared0.840536 S.D. dependent var12585.51S.E. of regression5025.770 Akaike info criterion19.94689Sum squared resid7.07E+08 Schwarz crite
27、rion20.04030Log likelihood-297.2033 F-statistic153.8588Durbin-Watson stat0.166951 Prob(F-statistic)0.000000ls y c x3Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Erro
28、rt-StatisticProb. C-1075.289570.5337-1.8847080.0699X30.4268170.01476828.901680.0000R-squared0.967567 Mean dependent var10049.04Adjusted R-squared0.966408 S.D. dependent var12585.51S.E. of regression2306.678 Akaike info c
29、riterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402 F-statistic835.3074Durbin-Watson stat0.292531 Prob(F-statistic)0.000000ls y c x4Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Tim
30、e: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1235.177727.9896-1.6966950.1008X43.1868510.14053022.677330.0000R-squared0.948364 Mean dependent var10049.04Adjusted R-squared0.946520 S.D. depend
31、ent var12585.51S.E. of regression2910.486 Akaike info criterion18.85437Sum squared resid2.37E+08 Schwarz criterion18.94778Log likelihood-280.8155 F-statistic514.2614Durbin-Watson stat0.215531 Prob(F-statistic
32、)0.000000ls y c x5 Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-86420.4215618.35-5.5332600.0000X50.8297890.1337076.2060250.0000R-squared0.579041 Mean dep
33、endent var10049.04Adjusted R-squared0.564006 S.D. dependent var12585.51S.E. of regression8310.188 Akaike info criterion20.95269Sum squared resid1.93E+09 Schwarz criterion21.04611Log likelihood-312.2904 F-stat
34、istic38.51474Durbin-Watson stat0.132458 Prob(F-statistic)0.000001ls y c x6Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-2026.867934.3495-2.1692810.0387X60
35、.3303540.01822218.128950.0000R-squared0.921494 Mean dependent var10049.04Adjusted R-squared0.918690 S.D. dependent var12585.51S.E. of regression3588.750 Akaike info criterion19.27334Sum squared resid3.61E+08
36、Schwarz criterion19.36675Log likelihood-287.1000 F-statistic328.6589Durbin-Watson stat0.189127 Prob(F-statistic)0.000000ls y c x7Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 18:36Sample: 1978 2007Included observations: 30VariableCoeffic
37、ientStd. Errort-StatisticProb. C4934.61616135.440.3058250.7620X70.1115300.3481620.3203380.7511R-squared0.003651 Mean dependent var10049.04Adjusted R-squared-0.031932 S.D. dependent var12585.51S.E. of regression12784.87 A
38、kaike info criterion21.81425Sum squared resid4.58E+09 Schwarz criterion21.90767Log likelihood-325.2138 F-statistic0.102616Durbin-Watson stat0.065981 Prob(F-statistic)0.7510912、 以為基礎(chǔ),順次加入其他變量逐步回歸。X3、X2:Dependent Variable: YMethod: L
39、east SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.24135.0898410.0000X2-1.1053390.105222-10.504860.0000X30.7219890.02887925.000560.0000R-squared0.993624 Mean dependent var10049.0
40、4Adjusted R-squared0.993152 S.D. dependent var12585.51S.E. of regression1041.474 Akaike info criterion16.82930Sum squared resid29286057 Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durb
41、in-Watson stat1.662637 Prob(F-statistic)0.000000X3、X4:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-241.4297318.0985-0.7589780.4544X31.6522700.14413111.46
42、3670.0000X4-9.2557481.087001-8.5149410.0000R-squared0.991199 Mean dependent var10049.04Adjusted R-squared0.990547 S.D. dependent var12585.51S.E. of regression1223.617 Akaike info criterion17.15165Sum squared resid40425409
43、0; Schwarz criterion17.29177Log likelihood-254.2747 F-statistic1520.477Durbin-Watson stat1.669559 Prob(F-statistic)0.000000X3、X5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included observations: 30Vari
44、ableCoefficientStd. Errort-StatisticProb. C27090.895304.5145.1071380.0000X30.5147960.01957626.297030.0000X5-0.2619970.049197-5.3254530.0000R-squared0.984182 Mean dependent var10049.04Adjusted R-squared0.983010 S.D. dependent var12585.51S.E. of regression1640.462 Akaike info criterion17.73798Sum squared resid72660152 Schwarz criterion17.87810Log likelihood-263.0698 F-statistic839.9479Durbin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國兔子養(yǎng)殖項目創(chuàng)業(yè)計劃書
- 中國紅棗深加工項目創(chuàng)業(yè)計劃書
- 中國基圍蝦養(yǎng)殖項目創(chuàng)業(yè)計劃書
- 中國康復器具項目創(chuàng)業(yè)計劃書
- 2025商務英語對話之合同洽談
- 中國南天竺項目創(chuàng)業(yè)計劃書
- 中國冬瓜項目創(chuàng)業(yè)計劃書
- 中國獨尾草項目創(chuàng)業(yè)計劃書
- 四川醫(yī)療項目創(chuàng)業(yè)計劃書
- 文化創(chuàng)意產(chǎn)業(yè)合作保密合同
- 《高低壓配電室施工工藝標準》
- 工務安全與應急處理
- 2021熱性驚厥臨床路徑
- 我的家鄉(xiāng)山東棗莊
- 鐵路專業(yè)職業(yè)生涯規(guī)劃書
- 部編版課件-道德與法治九年級上冊課件第五課第一框延續(xù)文化血脈
- 《危險化學品倉庫企業(yè)安全風險評估細則(試行)》解讀
- 2024年遼寧省中考數(shù)學真題卷及答案解析
- 新教科版小學1-6年級科學需做實驗目錄
- 信息工程部崗位職責表、績效評估表
- 建筑地基處理技術(shù)規(guī)范JGJ79-2002
評論
0/150
提交評論