閉區間上連續函數的性質74908學習教案_第1頁
閉區間上連續函數的性質74908學習教案_第2頁
閉區間上連續函數的性質74908學習教案_第3頁
閉區間上連續函數的性質74908學習教案_第4頁
閉區間上連續函數的性質74908學習教案_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、會計學1閉區間上連續函數的性質閉區間上連續函數的性質74908第一頁,編輯于星期日:二十二點 二十六分。一、最大值和最小值定理定義:例如,第1頁/共15頁第二頁,編輯于星期日:二十二點 二十六分。定理1(最大值和最小值定理) 在閉區間上連續的函數一定有最大值和最小值.xyo)(xfy ab2 1 注意:1.若區間是開區間, 定理不一定成立; 2.若區間內有間斷點, 定理不一定成立.第2頁/共15頁第三頁,編輯于星期日:二十二點 二十六分。xyo2 )(xfy xyo)(xfy 211定理2(有界性定理) 在閉區間上連續的函數一定在該區間上有界.證第3頁/共15頁第四頁,編輯于星期日:二十二點

2、二十六分。二、介值定理定義:第4頁/共15頁第五頁,編輯于星期日:二十二點 二十六分。幾何解釋:xyo)(xfy ab1 2 3 第5頁/共15頁第六頁,編輯于星期日:二十二點 二十六分。證由零點定理,xyo)(xfy abABMm1x2xC1 2 3 幾何解釋:第6頁/共15頁第七頁,編輯于星期日:二十二點 二十六分。例1證由零點定理,推論 在閉區間上連續的函數必取得介于最大值 與最小值 之間的任何值.Mm第7頁/共15頁第八頁,編輯于星期日:二十二點 二十六分。例2證由零點定理,第8頁/共15頁第九頁,編輯于星期日:二十二點 二十六分。例3 證由零點定理知總之第9頁/共15頁第十頁,編輯于

3、星期日:二十二點 二十六分。注方程f(x)=0的根函數f(x)的零點有關閉區間上連續函數命題的證明方法10直接法:先利用最值定理,再利用介值定理20間接法(輔助函數法):先作輔助函數, 再利用零點定理輔助函數的作法(1)將結論中的(或x0或c)改寫成x(2)移項使右邊為0,令左邊的式子為F(x)則F(x)即為所求第10頁/共15頁第十一頁,編輯于星期日:二十二點 二十六分。 區間一般在題設中或要證明的結論中已經給出,余下只須驗證F(x)在所討論的區間上連續,再比較一下兩個端點處的函數值的符號,或指出要證的值介于F(x)在所論閉區間上的最大值與最小值之間。第11頁/共15頁第十二頁,編輯于星期日:二十二點 二十六分。三、小結四個定理有界性定理;最值定理;介值定理;根的存在性定理.注意1閉區間; 2連續函數這兩點不滿足上述定理不一定成立解題思路1.直接法:先利用最值定理,再利用介值定理;2.輔助函數法:先作輔助函數F(x),再利用零點定理;第12頁/共15頁第十三頁,編輯于星期日:二十二點 二十六分。思考題下述命題是否正確?第13頁/共15頁第十四頁,編輯于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論