




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 復習復習待定系數(shù)法求二次函數(shù)關系式幾種方法待定系數(shù)法求二次函數(shù)關系式幾種方法)0( y2acbxax設一般式:設一般式:設頂點式:設頂點式:0)(a h)-a(xy2k設交點式:設交點式:y=a(x-x1)(x-x2)(a0)x1,x2為函數(shù)圖像與x軸交點的橫坐標 復習復習觀察圖像,能從圖中觀察圖像,能從圖中 獲得什么信息獲得什么信息230求出拋物線的函數(shù)解析式_ (1,3)3) 1(32xy頂點d開口向下開口向下與與x軸交點為(軸交點為(0,0),),(2,0)我們可以設二次我們可以設二次函數(shù)解析式為函數(shù)解析式為y=a(x-h)2+kh=1,k=3 一個涵洞成拋物線形,一個涵洞成拋物線形,
2、xyo 一個涵洞成拋物線形,它的截面如圖所示,現(xiàn)測得,一個涵洞成拋物線形,它的截面如圖所示,現(xiàn)測得,當水面寬當水面寬ab2米,涵洞頂點米,涵洞頂點o與水面的距離為與水面的距離為3米,米,以以o為原點,為原點,ab的中垂線為的中垂線為y軸軸,建立直角坐標系,建立直角坐標系,1.直接寫出直接寫出a,b,o的坐標的坐標 2.求出拋物線的函數(shù)解析式求出拋物線的函數(shù)解析式3a(-1,-3) b(1,-3) o(0,0)探索一探索一y=-3x2 一個涵洞成拋物線形,它的截面如圖所示,現(xiàn)測得,一個涵洞成拋物線形,它的截面如圖所示,現(xiàn)測得,當水面寬當水面寬ab2米,涵洞頂點與水面的距離為米,涵洞頂點與水面的距
3、離為3米,米,以以o為原點,為原點,ab的中垂線為的中垂線為y軸軸,建立直角坐標系,建立直角坐標系,1.直接寫出直接寫出a,b,o的坐標的坐標 2.求出拋物線的函數(shù)解析式求出拋物線的函數(shù)解析式 3.離開水面離開水面1.5米處,涵洞寬米處,涵洞寬ed是多少是多少1.531.5of=1.5 求求d點的縱坐標點的縱坐標由拋物線的對稱性得由拋物線的對稱性得ed=2fd求求d點的橫坐標點的橫坐標yd=-1.5y= 3x2解方程解方程一個涵洞成拋物線形,它的截面如圖所示,現(xiàn)測得,當水面寬ab2米,涵洞頂點d與水面的距離為3米,(1)建立適當?shù)闹苯亲鴺讼担┙⑦m當?shù)闹苯亲鴺讼?幾種建法)幾種建法)(2)根據(jù)
4、你建立的坐標系,求出拋物線的解析式)根據(jù)你建立的坐標系,求出拋物線的解析式y(tǒng)= -3x2探索二探索二若水面上漲1米,則此時的水面寬mn為多少 以以ab的中點為原點,以的中點為原點,以ab為為x軸建立直角坐標系軸建立直角坐標系o哪一種坐標系建法比較簡單哪一種坐標系建法比較簡單建系方法不一樣,但求出的實際寬度是一樣的建系方法不一樣,但求出的實際寬度是一樣的p3) 1(32xyaby=-3x2+3圖像可通過平移而得到o(3)又一個邊長為)又一個邊長為1.6米的正方體木箱,能否通過此米的正方體木箱,能否通過此涵洞,說明理由(木箱底面與水面同一平面)涵洞,說明理由(木箱底面與水面同一平面)fefnc1.
5、6當通過的底為當通過的底為1.6時,能通過的最大高度為時,能通過的最大高度為nf,比較比較nf與正方體的高與正方體的高o(4)又一個邊長為)又一個邊長為1.6米的正方體木箱,能否通過此米的正方體木箱,能否通過此涵洞,說明理由(木箱底面與水面同一平面)涵洞,說明理由(木箱底面與水面同一平面)fnc1.6當通過的底為當通過的底為1.6時,能通過的最大高度為時,能通過的最大高度為nf,比較比較nf與正方體的高與正方體的高若箱子從涵洞正中通若箱子從涵洞正中通過,當通過的底為過,當通過的底為1.6時,能通過的最大高時,能通過的最大高度為度為nf=1.5,小于正方小于正方體的高體的高1.6,所以不能通過所
6、以不能通過找點坐標找點坐標建立變量與變量之間的建立變量與變量之間的函數(shù)關系式函數(shù)關系式確定確定自變量的取值范圍自變量的取值范圍,保證自變量具有實際意義,保證自變量具有實際意義,解決問題解決問題設定實際問題中的設定實際問題中的變量變量把實際問題轉化為點坐標把實際問題轉化為點坐標和和2 2就就是是原原方方程程的的解解. .2 23 3標標b b的的橫橫坐坐他他認認為為它它們們的的交交點點a a, ,3 3的的圖圖象象, ,x x2 21 1和和y yx xy y而而是是分分別別畫畫出出函函數(shù)數(shù)項項, ,唯唯獨獨小小劉劉沒沒有有將將方方程程移移方方程程的的解解, ,得得出出觀觀察察它它與與x x軸軸的的交交點點, ,畫畫出出函函數(shù)數(shù)圖圖象象, ,0 0, ,3 3x x2 21 1x x化化為為幾幾乎乎所所有有學學生生都都將將方方程程3 3的的解解時時, ,x x2 21 1求求方方程程x x: :中中出出現(xiàn)現(xiàn)爭爭論論初初三三某某班班的的學學生生在在問問題題2 22 22 2思考:1212xxy1.一個運動員推鉛球,鉛球在一個運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2218-2025尿動力分析儀校準規(guī)范
- 招教師考試試題及答案
- 素材收集的數(shù)學試題及答案示例
- 家具行業(yè)設計師所需的法律知識考題及答案
- 碘伏考試題及答案
- 新能源汽車行業(yè)的營銷渠道研究試題及答案
- 梅州二模試題及答案政治
- 數(shù)學基礎強化練習試題及答案幼兒園
- 探討創(chuàng)業(yè)環(huán)境與扶持政策的互動性試題及答案
- 施工現(xiàn)場消防防護管理試題及答案
- 【MOOC】人工智能導論-福建師范大學 中國大學慕課MOOC答案
- 六年級數(shù)學分數(shù)混合運算練習300題及答案
- 兒童口腔舒適化治療
- 《基金的信息披露》課件
- 2024年研發(fā)部規(guī)劃
- 《冠心病》課件(完整版)
- 失業(yè)保險待遇申領表
- 銷售提成及職能部門員工利潤分紅方案
- 藥用植物學智慧樹知到答案2024年浙江中醫(yī)藥大學
- 評職稱業(yè)績合同協(xié)議書
- 四年級《爺爺?shù)臓敔攺哪睦飦怼烽喿x測評題
評論
0/150
提交評論