乘法公式完全平方PPT課件_第1頁
乘法公式完全平方PPT課件_第2頁
乘法公式完全平方PPT課件_第3頁
乘法公式完全平方PPT課件_第4頁
乘法公式完全平方PPT課件_第5頁
已閱讀5頁,還剩29頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、平方差公式練習:用平方差公式計算:(1)(-3x+4y2)(-4y2-3x)(2)(x-2)(x2+4)(x+2)(x4+16)(a+b)(a-b)=a2-b2溫故而知新:兩數和與這兩數差的積,等于這兩數的平方差baab第1頁/共34頁1.計算后比較:(3+1)1610(3+1)222)(baba(2a+x)2=2)(:. 2ba計算第2頁/共34頁bbaa2)(ba(a+b)a2ab2bababab2+完全平方和公式:你能用一個圖形的面積直觀地表示(ab)2的結果嗎?第3頁/共34頁完全平方公式: 兩數和的平方,等于這兩數的平方和 , 加上這兩數積的2倍. (a+b)2=a2+2ab+b2第

2、4頁/共34頁一般的,我們有以下兩數和的完全平方公式:2222)(bababa2)32(yx計算:2)2x(2)3( y)3)(2(2yx222222)()()(2)()3(2)()()(2)()2() 1 (yxx)(填空:229124yxyx22xxxxy3y3第5頁/共34頁第6頁/共34頁aabb(a-b)2)(ba2aab222aabbaababab2bbbb完全平方差公式: 的圖形理解第7頁/共34頁完全平方公式: 兩數差的平方,等于這兩數的平方和,減去這兩數積的2倍. (a b)2=a22ab+b2222)()()(2)()2() 1 ( x222)()()(2)()2()2(x

3、第8頁/共34頁 (a+b)2=a2+2ab+b2(a b)2=a22ab+b2完全平方公式平方差公式和完全平方公式也稱乘法公式。第9頁/共34頁 (a+b)2=a2+2ab+b2(a b)2=a22ab+b2完全平方公式首平方,尾平方,首尾兩倍放中央公式變形為(首尾)2首22首尾尾2第10頁/共34頁例1 運用完全平方公式計算: (1)(x+2y)2; (2)(2a-5)2;(3) (-2s+t)2; (4) (-3x-4y)2. 解:(1)原式=x2+2x2y+(2y)2 =x2+4xy+4y2(2)原式=(2a)2-22a5+52=4a2-20a+25(3)原式=(-2s)2+2(-2s

4、)t+t2=4s2-4st+t2(4)原式=(-3x)2-2(-3x)4y+(4y)2 =9x2+24xy+16y2第11頁/共34頁(1)(x+2y)2;(2)(2a-5)2;(3) (-2s+t)2; (4) (-3x-4y)2. 例1 運用完全平方公式計算: =4a2-20a+25 =x2+4xy+4y2=9x2+24xy+16y2=4s2-4st+t2第12頁/共34頁練習1: (119頁課內練習2)2)3)(1 (x2)7)(2(y2)7)(4(y2)5121)(6(nm962xx2)32)(5(yx49142yy2)313)(3(t49142yy29129tt 229124yxyx

5、222515141nmnm第13頁/共34頁例2、運用公式計算: )3)(3)(1 (xx222)4)(2(ba 22)2)(3(ba )2)(2()2)(4(2bababa2)3() 1 ( :x原式解96)96(22xxxx第14頁/共34頁練習2 (P119作業題.2 選擇公式計算))21)(12)(1 (xx)2)(2)(2(yxyx)5)(5)(3(aa) 1)(1)(4(abab1442xx224xy 252 a1222abba第15頁/共34頁1、下面各式的計算是否正確?如果不正確,應當怎樣改正?(2)(x -y)2 =x2 -y2(3) (x -y)2 =x2-2xy -y2(

6、4) (x+2y)2 =x2 +2xy +2y2(x +y)2 =x2+2xy +y2(x -y)2 =x2 -2xy +y2(x -y)2 =x2 2xy +y2(x +2y)2 =x2+ xy +4y2(1)(x+y)2=x2 +y2第16頁/共34頁(2) (a - b)2 與 (b - a)2 (1) (-a -b)2 與(a+b)22、比較下列各式之間的關系:(3)(-b +a)2 與(-a +b)2互為相反數的兩式的完全平方結果一樣。第17頁/共34頁第18頁/共34頁4.在橫線上填入適當的整式:222222) 15(_1025).3()32(9_4).2()7(49_).1 (x

7、xxxxxx14x12x1第19頁/共34頁例3:一花農有1塊正方形茶花苗圃,邊長為a(m)。現將這塊苗圃的邊長都增加1.5m,求這塊苗圃的面積增加了多少m。(a+1.5)-a=a+3a+2.25-a= 3a+2.25第20頁/共34頁一花農有4塊正方形茶花苗圃,邊長分別為 30.1 m , 29.5 m, 30m,27m. 現將這4塊苗圃的邊長都增加1.5m后,求各苗圃的面積分別增加了多少m2?生活在線:第21頁/共34頁解:設原正方形苗圃的邊長為a (m),邊長增加1.5m后,新正方形的邊長為(a+1.5) m。(a+1.5)2-a2=a2+3a+2.25-a2=3a+2.25當a=30.

8、1時,3a+2.25=330.1+2.25=92.55當a=29.5時,3a+2.25=329.5+2.25=90.75當a=30 時,3a+2.25=330 +2.25=92.25當a=27 時,3a+2.25=327 +2.25=83.25答:4塊茶花苗圃的面積分別增加了92.55m2,90.75m2,92.25m2,83.25m2。例3、花農老萬有4塊正方形菜花苗圃,邊長分別為30.1m,29.5m,30m,27m。現將這4塊苗圃的邊長都增加1.5m, 求各苗圃的面積分別增加多少m2?第22頁/共34頁 第23頁/共34頁 完全平方公式2222bababa2222bababa口訣:首平方

9、,尾平方,首尾兩倍放中央完全平方公式:2222)(bababa1).不漏中間項。2).注意中間項的符號對應。3).乘方時應適當添括號第24頁/共34頁第25頁/共34頁(1)化簡: (2m+1)(2m)(3)用簡便的方法計算: 23452+0.76552+2.4690.7655_199)2(2簡便計算:做一做:第26頁/共34頁(4)如果x2+ax+36是一個完全平方式,那么a=_(6)已知(a+b)2=11,ab=1,求(a-b)2的值.做一做:(5)如果x2+6x+b2是一個完全平方式,那么b= ;123第27頁/共34頁1、計算:22)21)(1 (a) 1)(1)(2(xx2)(3(cba2、若 ,則31xx221xx提高拓展:第28頁/共34頁生活在線:要給一邊長為a米的正方形桌子輔上正方形的桌布,桌布的四周均超出桌面0.1米,問需要多大面積的桌布.解:由題意知,桌布是邊長為(a+0.2)米的正方形,故面積為: 著手點:1.桌布的形狀 2.邊長多少?第29頁/共34頁第30頁/共34頁第31頁/共34頁生活在線:小紅用5塊工藝布料制作靠墊面子,如圖甲,其中四周的4塊由如圖乙的長方形布料裁成4塊得到,正中的一塊從另一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論