




已閱讀5頁,還剩5頁未讀, 繼續免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
外文部分Chapter2Planewaves2.1IntroductionInthischapterwepresentthefoundationsofFourieracoustics-planewaveexpansions.Thismaterialispresentedindepthtoprovideafirmfoundationfortherestofthebook,introducingconceptslikewavenumberspaceandtheextrapolationofwavefieldsfromonesurfacetoanother.Fouriesacousticsisusedtoderivesomefamoustoolsfortheradiationfromplanarsources;theRayleighintegrals,theEwaldsphereconstructionoffarfieldradiation,thefirstproducttheoremforarrays,vibratingplateradiation,andradiationclassificationtheory.Finally,anewtoolcalledsupersonicintensityisintroducedwhichisusefulinlocatingacousticsourcesonvibratingstructures.Webeginthechapterwithareviewofsomefundamentals;thewaveequation,Eulersequation,andtheconceptofacousticintensity.2.2TheWaveEquationandEulersEquationLetp(x,y,z,t)beaninfinitesimalvariationofacousticpressurefromitsequilibriumvaluewhichsatisfiestheacousticwaveequation222210ppct(2.1)forahomogeneousfluidwithnoviscosity.cisaconstantandreferstothespeedofsoundinthemedium.At020Cc=343m/sinairandc=1481m/sinwater.TherighthandsideofEq.(2.1)indicatesthattherearenosourcesinthevolumeinwhichtheequationisvalid.InCartesiancoordinates2222222xyzAsecondequationwhichwillbeusedthroughoutthisbookiscalledEulersequation,0vpt(2.2)Wherev(Greekletterupsilon)representsthevelocityvectorwithcomponentsu,v,w;vuivjwk(2.3)whereijandkaretheunitvectorsinthethex,y,andzdirections,respectively,andthegradientintermsoftheunitvectorsasijkxyz(2.4)WeusetheconventionofadotoveradisplacementsquantitytoindicatevelocityasisdoneinJungerandFeit.Thedisplacementsinthethreecoordinatedirectionsaregivenbyu,v,andw.ThederivationofEq.(2.2)isusefulindevelopingsomeunderstandingofthephysicalmeaningofpandv.Letusproceedinthisdirection.Figure2.1:InfinitesimalvolumeelementtoillustrateEulersequationFigure2.1showsaninfinitesimalvolumeelementoffluidxyz,withthexaxisasshown.Allsixfacesexperienceforcesduetothepressurepinthefluid.Itisimportanttorealizethatpressureisascalarquantity.Thereisnodirectionassociatedwithit.Ithasunitsofforceperunitarea,2/NmorPascals.Thefollowingistheconventionforpressure,P0CompressionP0RarefactionAtaspecificpointinafluid.apositivepressureindicatesthataninfinitesimalvolumesurroundingthepointisundercompression,andforcesareexertedoutwardfromthisvolume.ItfollowsthatifthepressureattheleftfaceofthecubeinFig.2.1ispositive,thenaforcewillbeexertedinthepositivexdirectionofmagnitudep(x,y,z)yz.Thepressureattheoppositefacep(x+x,y,z)isexertedinthenegativexdirection.Weexpandp(x+x,y,z)inaTaylorseriestofirstorder,asshowninthefigure.Notethattheforcearrowsindicatethedirectionofforceforpositivepressure.Giventhedirectionsofforceshown,thetotalforceexertedonthevolumeinthexdirectionis(,)(,)ppxyzpxxyzyzxyzxNowweinvokeNewtonsequation,f=ma=mut,wherefistheforce,0mxyzand0isthefluiddensity,yielding0uptxCarryingoutthesameanalysisintheyandzdirectionsyieldsthefollowingtwoequations:0uptyand0uptzWecombinetheabovethreeequationsintooneusingvectorsyieldingEq(2.2)above,EulersEquation.2.3InstantaneousAcousticIntensityItiscriticalinthestudyofacousticstounderstandcertainenergyrelationships.Mostimportantistheacousticintensityvector.Inthetimedomainitiscalledtheinstantaneousacousticandisdefinedas()()()Itptvt,(2.5)withunitsofenergyperunittime(power)perunitarea,measuredas(joules/s)/2morwatts/2m.Theacousticintensityisrelatedtotheenergydensityethroughitsdivergence,eIt,(2.6)wherethedivergenceisyxzIIIIxyz(2.7)Theenergydensityisgivenby2211022|()|()evtpt(2.8)whereisthefluidcompressibility,201c(2.9)Equation(2.6)expressesthefactthatanincreaseintheenergydensityatsomepointinthefluidisindicatedbyanegativedivergenceoftheacousticintensityvector;theintensityvectorsarepointingintotheregionofincreaseinenergydensity.Figure2.2shouldmakethisclear.IfwereversethearrowsinFig.2.2,apositivedivergenceresultsandtheenergydensityatthecentermustdecrease,thatis,et0.Thiscaserepresentsanapparentsourceofenergyatthecenter.Figure2.2:Illustrationofnegativedivergenceofacousticintensity.Theregionatthecenterhasanincreasingenergydensitywithtime,thatis,anapparentsinkofenergy.2.4SteadyStateToconsiderphenomenainthefrequencydomain,weobtainthesteadythesteadystatesolutionthroughtransforms()1()2iwtptpwedw(2.10)leadingtothesteadystatesolution()()iwtpwptedt(2.11)Equation(2.10)canbedifferentiatedwithrespecttotimetoyieldtheimportantrelationship()1()2iw
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能家電銷售及安裝服務協議
- 2025-2025學年度文化藝術節策劃計劃
- 人教版道德與法治教學反思與改進計劃
- 2025-2030中國混合動力鋰離子電池行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國濃香型白酒行業市場發展分析及前景趨勢與投資研究報告
- 2025-2030中國活塞式濃縮咖啡機行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國注塑桶產業運營現狀與未來發展方向預測研究報告
- 文化創意產業私董會的交流流程
- 2025年消防執業資格考試題庫-消防應急救援預案編制與演練評估報告反饋要點試題
- 2025-2030中國氨茶堿片行業發展趨勢及發展前景研究報告
- 人教版四年級語文下冊期中考試及答案
- 下學期八年級期中考試家長會課件
- 2024年全國統一考試高考新課標Ⅰ卷數學試題(真題+答案)
- ???024年中國熱帶農業科學院??趯嶒炚菊衅腹P試歷年典型考題及考點附答案解析
- 江蘇2024年江蘇國際文化交流中心招聘人員筆試歷年典型考題及考點附答案解析
- 安全風險分級管控與隱患排查治理雙重預防體系-污水處理廠模板
- 2024年廣東省中考歷史試卷試題真題及答案(精校打印版)
- 2024年保密教育線上培訓考試題目附答案
- SH/T 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統技術標準(正式版)
- 關于加快專門學校建設和專門教育工作的實施方案
- YY/T 0331-2024脫脂棉紗布、脫脂棉粘膠混紡紗布的性能要求和試驗方法
評論
0/150
提交評論