




已閱讀5頁,還剩8頁未讀, 繼續免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
初一數學期末復習計劃一、復習內容:第一章:豐富的圖形世界第二章:有理數及其運算第三章:整式及其加減第四章:基本平面圖形第五章:一元一次方程第六章:數據的收集與整理二、復習目標:1、初一數學期末復習計劃2、通過本學期的數學學習,總結自己有哪些收獲,有哪些需要改進的地方。三、復習重點難點:復習的重點放在的第二、三、四、六章。第二章 有理數復習重點:1、數軸、相反數與絕對值2、掌握有理數的加法、乘法法則及運算律. 乘方的概念、表示及符號法則。復習難點:了解數形結合的數學方法。突破重點難點:1、數軸的建立以及利用數軸建立起來的數形結合的數學思想是學習本節的關鍵。2、有理數的加法特別是異號兩數相加的法則,以及把有理數的加減混合算式省略加號寫成和的形式是本章的難點。冪、底數、指數的概念也是難點。實際操作:創設實際情景,借助數軸分類探究有理數的加法法則,關鍵把握兩點一是符號,二是絕對值,通過數形結合的方式突破該難點。有理數的乘方是一種新的運算,教材通過實例引入定義及運算符號,乘方運算可歸結為乘法運算,關鍵在于讓學生搞清冪、底數、指數的意義及相互關系。一課時考試,一課時講解。第三章 整式的加減復習重點:單項式及單項式的系數、次數的概念;多項式及多項式的項、次數的概念。探究發現同類項的特征及合并同類項的法則。去括號法則及其應用。復習難點:準確迅速地確定一個單項式的系數和次數,寫出多項式的項和次數。括號前是-號,去括號時,括號內的各項都要改變符號,合并同類項及應用。本章是研究整式的開始,知識由數向式轉化,比較抽象,與學生的認知基礎和思維能力有一定差距,學習中會有一定困難。特別是在確定比較復雜的單項式系數和次數、多項式的項和次數時容易出現錯誤。為了突破重點,化解難點,教學中要把握以下兩點:(1)加強直觀性:為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念。(2)注重分析:在剖析單項式與多項式結構時,借助變式和反例練習,抓住概念易混處和判斷易錯處,強化認識。正確理解去括號法則,并會把括號與括號前的符號理解成整體。正確運用合并同類項法則進行整式加減法的練習實際操作:一課時考試,一課時講解。第五章:一元一次方程復習重點:使學生能根據具體問題中的數量關系列出一元一次方程,掌握解一元一次方程的基本方法,能運用一元一次方程解決實際問題。復習難點:用等式的兩條性質解一元一次方程,列一元一次方程解決實際問題,根據具體問題中的數量關系建立議程,從而解決問題。突破重點難點:鼓勵學生的處處探索與合作交流,有效的數學學習過程有能單純地依賴模仿與記憶,在解一元一次方程和列一元一次議程等學習過程中,應學生主動地從事觀察、操作、交流、歸納等探索活動。充分挖掘結合學生生活實際的未經要求,加強數學一現實的聯系,讓學生體會數學的廣泛應用。實際操作:一課時考試,一課時講解。第四章:基本平面圖形復習重點:線段及其中點的性質,角的平分線的定義及其性質,度分秒的互化,含線段、角符號的運算。 復習難點:直線、射線、線段、角等幾何概念都是抽象的,學生理解有一定的難度,還有問題可能出現多種情況,解題時,要全面考慮,時需分類討論,分類要按統一標準進行,做到不重、不漏,對于學生來說有一定的難度,注意幾何語言的學習與使用,如“有且只有”的含義。能做到既能看圖用簡章的幾何語言敘述,雙能根據簡章的幾何語言畫出相應的圖形。 突破重點難點: 1、立足于學生的生活經驗和已有的數學活動經驗,創造性地選用現實生活中的有關題材,呈現教學內容。 2、注意揭示知識間的聯系,復習中,有意識、有計劃地設計教學內容,引導學生體會兩直線間的位置及其性質,對幾何語言多加練習。 實際操作:一課時考試,一課時講解。 第六章:數據的收集與整理復習重點:數據的收集方法、普查抽樣的基本概念、統計圖的作法及選擇。復習難點:普查、抽樣調查的運用、統計圖的作法及選擇。突破重點難點:1、抓住基本概念的記憶,明確概念間的聯系和區別。2、明確三種統計圖的作法和基本步驟,了解不同統計圖的作用。 實際操作:一課時考試,一課時講解。四、復習方法及措施1、重視各章節重點知識與方法講析,精選習題。2、針對重難點及易錯點強化訓練,第二、三、五章專題訓練計算。3、分類講評,進行跟蹤練習,以考帶練,有針對性講解4、在復習中進行一次年級檢測考試,及時反饋復習情況。5、對不同的學生進行分層要求、分層提高。 宗翠萍 李 俠 程 亮 2015-1-12初中幾何教學中踐行“三真”教育初探 施 剛 顧晨奕 自從歐氏幾何體系建立以來, 幾何與演繹推理結下了不解之緣, 幾何教學培養學生邏輯推理能力的認識在人們的心目中根深蒂固。 我們的學生十多歲正處于空間知覺即形體直觀認知能力的重要發展階段。他們這個時期學習幾何是最合適的, 他們能夠學習一些幾何初步知識,并在其過程中形成空間觀念。但它不只是簡單的“看看,算算” ,它要求我們的學生掌握必要的形體知識,形成一定的空間觀念,并且需要形成空間思維能力來了解、解決我們的一些生活問題。幾何內容的這種過分抽象和形式化,使其缺少與現實的緊密聯系,使幾何的直觀優勢沒有得到充分發揮, 而過分強調演繹推理和形式化使不少學生懼怕幾何, 甚至厭惡幾何、遠離幾何,從而喪失學習數學的興趣和信心。 如何提高學生學習幾何的興趣和能力?本文嘗試結合學生與教師的實際情況, 緊緊圍繞“三真”教育的核心即真情、真實、真才的要求,從以下三個方面作些探討:注重真情,激發興趣生成動力;追求真實,注重每個環節的規范; 培養真才, 養成良好的思維和表達方式。 一、注重真情,激發興趣生成動力 新課程標準要求教師在課堂教學中關注生命、關注發展,所以,我們組織的學習方式必須是“開放式”、“民主式”的充滿真情期盼的,我們的真情教育從以下幾個方面實施: 1.開展學生問卷調查,了解不同年級學生對幾何認知的狀況及需求 在正式開展本課題研究之前, 課題組分別在初一和初三兩個不同年級的學生中做了 初中學生關于學習幾何的認知情況調查問卷 ,完成了該問卷對應的兩個年級的調查報告。經調查,我們發現,在不同的年級,學生對幾何學科的認識既有相同的看法又有明顯不同的年級特征。比較一致的在諸如:最早知道“幾何”的年級、學習“幾何”主要有什么用、 “幾何”和“代數”更喜歡哪個、做幾何題的習慣、幾何題中添輔助線的能力等方面。有明顯不同的在諸如:“以怎樣的態度學習幾何”低年級的學生有 60是為了興趣愛好學習幾何,而高年級 71.42的學生認為是為了考試學習幾何; “對做幾何題的感覺”低年級 48的學生感覺較好,而高年級 52.38的學生感覺一般; “做幾何題時最喜歡的題型”低年級 62的學生喜歡畫各種幾何圖形,而高年級 61.9的學生喜歡邏輯證明題。由此可見,現行教材中幾何教學由實驗幾何向論證幾何過渡的安排是完全符合學生認知習慣的, 教師在實踐時應該根據學生不同年齡階段特征組織學生的進行學習,以達到學生的心理需求。 2.交流數學趣題與數學家的小故事,激發興趣生成動力 在為期兩年的實踐期間,教師結合教材內容有機地開展數學趣題和數學家的小故事交流活動,即開拓了學生的視野又為學生了解數學史創設條件, 使數學在學生眼中不再是枯燥乏味的,了解數學源于生活又對日常生活的巨大影響, 同時從中外數學家的身上由興趣生成動力,并學到追求真理的執著精神。 數學趣題集部分目錄如下: 數學符號的起源、數從何而來?、質數與哥德巴赫猜想、進位制與位值制、無理數的發現、從代數數到超越數、多邊形、分類討論、三等分角問題、從勾股數到勾股定理、有用的待定系數法、抽屜原理、奇妙的圓形、數軸的建立、奇妙的坐標系、丟番圖方程、割圓術與、人類對的探索、黃金分割、球體積計算有妙方、正弦、余弦、關于儲蓄的科學、有趣的位置幾何問題、分形簡介、度、分、秒制 數學小故事集部分目錄如下: 幾何之父歐幾里德、西方的勾股定理之父畢達哥拉斯、杰出的女數學家米諾特、解析幾何的創始人笛卡爾、 數學王子高斯、 泰勒斯西方理性數學的倡導者、阿爾花拉子模中世紀阿拉伯數學家、萬能大師萊布尼茨、韋達符號代數的先 1驅、為科學而瘋的人康托爾、第一個算出地球周長的人埃拉托色尼、 羅巴切夫斯基、歐拉、科學巨人牛頓、業余數學家之王費馬、20 世紀數學的指路人希爾伯特、數學奇才伽羅華、全能數學家彭加勒、秦九韶、祖沖之、劉徽、楊輝宋代著名的數學教育家、工作到最后一天的華羅庚、轟動日本列島的中國數學家陳建功、摘取數學皇冠上的明珠陳景潤、中國數學界的伯樂熊慶來、丘成桐、獲沃爾夫獎唯一華人數學家陳省身 3.形成師生互動、互助和合作氛圍 筆者通過調查還發現:在完成一道較難的幾何證明題后,學生回答中絕大多數表示“很 、 、有成就感”“心情很愉悅”“自信心倍增”等,若教師在學生解完題后能不失時機地表揚,對增加學生的學習動力非常有益。 在希望老師如何教授幾何方面, 有半數左右的學生希望老 、師“只要提示方法,讓學生自己證明”“不要講太多,自己實踐為主”等。另有部分學生希望老師“多講典型題目及方法匯總對比”和“多些課外的拓展題”等。幾何教學的最大難點在于能力強的學生能夠自學,但能力弱的學生還要老師“手把手”地教。故幾何課如何做到效率與質量雙提高?教師須在學情分析、 教材分析等方面更多下功夫。對于實在沒有思路的幾何題,大多數學生表示“先放一邊,先做其它作業,一會兒再回過頭思考”或“先放一邊,待會兒與同學討論后再做”。只有個別學生表示“會向老師求教”或“空著,等老師講解后 。再做” 可見現在的學生請教老師的主觀意向越來越少, 融洽的師生關系需要老師用心維系。 為此筆者認為:要多途徑地為學生提供表現的機會,展示的場合,滿足其體現自我價值要求。把課堂的觸角深入到更加寬泛的視野,為學生創設諸如: 合作式、質疑式、體驗式、討論式等喜聞樂見的學習形式提供條件。同時教學中教師要將即興評價和延緩評價有機結合,充分運用評價的激勵功能,堅持正面引導,提倡無錯原則,讓每一位勇于回答問題、敢于提出問題的學生都毫無遺憾地坐下,激發學生的附屬內驅力。保護好學生積極思考、善于發現問題的熱情與能力,把這種熱情與能力培養成學生的一種思維品質,讓學生有時間、有空間帶著自己的知識、經驗、興趣、靈感參與課堂交流,從而促使課堂教學呈現出更多的靈活性、生成性和豐富性。在此過程中也促使教師知識與素質的提高和教學觀念的更新,促使教師反思、研究和完善。 二、追求真實,注重每個環節的規范 數學自有一套簡潔、清晰的邏輯系統,數學教育培養的重點之一是邏輯推演能力。很多人將數學僅僅看做培養計算能力,學會算術。但實際上這種理解過于狹隘,計算能力遠非數學的培養目標。數學學習關注的是邏輯推演能力的養成。 對于幾何學習,就是要求能用清晰、直觀的坐標或圖形,表達比較復雜的邏輯關系,注重各環節聯系的規范。 1.幾何的理解閱讀規范 學習幾何必須學會讀題、審題。讀完題目后,要抓住關鍵,能把一些關鍵詞和基本圖形結合起來。要注意對幾何語言的理解,幾何語言表達要確切。 例如:鈍角的意義是“大于直角而小于平角的叫鈍角”,若把“而”字說成了“或”字,鈍角的意義就變成“大于直角或小于平角的角叫鈍角”這就是學習對幾何語言理解不佳,造成的表達不確切。“一字之差”意思各異,在輔導時,注重語言的準確性,對其犯的錯誤反復更正,學習之初就要嚴謹對待。 又如:學習垂徑定理時,學生對定理“如果圓的直徑平分弦(這條弦不是直徑),那么這條直徑垂直這條弦,并平分這條弦所對的弧”理解不透,經常在判斷中出錯,甚至到了初三時還會發生錯誤, 實際上學生是沒有理解這句話中幾個關鍵字或詞: 直徑、平分、不是直徑,因此筆者通過變式給出如下語句讓學生去判斷,并在錯誤的判斷中給出反例,讓學生理解錯誤的原因。 2 圖2 圖3 圖1 (1)平分弦的直線垂直這條弦()見圖 1 (2)平分弦的直徑垂直這條弦()見圖 2 (3)平分弦的半徑垂直這條弦()見圖 3 通過上述三個小判斷,指出直徑與直線的區別,弦是直徑時對結論的影響等,理解了為什么要附加條件:這條弦不是直徑。學生的辨析能力得到提高,思維更加縝密。 2.幾何的符號語言使用規范 從幾何第一課起, 就應該特別注意幾何語言的規范性, 要讓學生理解并掌握一些規范性的幾何語句。 如:“延長線段 AB 到點 C,使 AC2AB”“過點 C 作 CDAB,垂足為點 D”,“過點 A作 lCD”等每一句通過上課的教學,課后的輔導,手把手的作圖,表達幾何語言后作圖,反復多次,讓學生理解每一句話,看得懂題意。 又如:如圖,梯形 ABCD 中,ADBC E 為 DC 的中點,且AEB90。 求證:ADBCAB 有學生這樣解答:延長 AE 到點 M使 AEEM,連結 CM.通過證明ADEMCEASA得到 ADMCAEME所以 ADBCBCCMBM然后證明ABEMBESAS得到 ABBM進而得到所求結論。 事實上延長 AE 到點 M使 AEEM,連結 CM.并不能保證點 B、C、M 在同一條直線上。本題適宜延長 AE 交 BC 的延長線于 M再證明ABEMBESAS得到 ABBM。 3.幾何的書寫格式規范 數學中推理證明的書寫格式有許多種, 但最基本的是演繹法,也就是從已知條件出發,根據已經學過的數學概念、公理、定理等知識,順著推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求證的結論來。這種證題格式一般叫“演繹法”,課本上的定理證明,例題的證明,多數是采用這種格式。它的書寫形式表達常用語言是“因為,所以”特別是一開始學習幾何證明,首先要掌握好這種推理格式,做到規范化。 例如:已知,如圖:ABC 中,CD 平分ACB A62,B74,DEBC。 求: EDC 的度數 有學生這樣解答: ACB180-A-B44(三角形三個內角和180) 1 又BCD ACB22(角平分線定義) 2 EDCBCD22(兩直線平行,內錯角相等) 該題答案雖然正確,但是解題過程不規范,跳步、漏步嚴重,沒有體現演繹推理的特點,這在最初接觸用幾何語言書寫的學生中普遍存在,此時若教師沒有強調幾何題的邏輯思維嚴密性,久而久之學生的幾何書寫格式必然會越來越亂,演繹推理能力自然也無法得到真正的提高。 4.幾何的圖形、標注規范 畫圖是識圖的基礎,幾何題一般要畫圖,圖形與題目內容要一致。畫出正確的、符合題意的圖形,往往會給學生留下直觀的印象,也給解題、證明帶來清晰的思路。相反,不正確 3的圖會給學生錯誤的信息,造成思考問題,解決問題帶來障礙,把思維引入歧途,使原本顯而易見的問題變得復雜化。所以,教師在幾何教學中嚴格要求自己,畫圖操作要規范,認真對待,起到示范引領作用。要求學生用畫圖工具畫出準確的圖形,切不可怕麻煩或是草率的徒手畫圖。 例如:已知相交兩圓的公共弦長是 6,若兩圓半徑分別是 5 和 8,求兩圓的圓心距。 此題是一道無圖幾何題,多數學生給出的答案是( 4 55 );也有少數學生給出的答案是( 55 4 );還有一部分學生不知道從哪里著手考慮。 此題需要學生自主畫出圖形后才能順利求解,但兩圓相交,兩圓心在公共弦的兩側還是同側,題中沒有明確指出,需分類求解。易求得圓心距分別為 4 55 ) ( 55 4 ) 。 ( 和若在平時沒有養成利用圖形對一些概念、定理進行理解,學生的識圖能力就會較差,不能將已知條件和圖形有機結合起來,幾何語言表達不清,就難以根據幾何語言畫出正確的圖形。 三、培養真才,養成良好的思維和表達能力 義務教育數學課程標準(2011 年版)明確指出:教師對初中階段的學生要致力培養積極參與數學活動,對數學有好奇心和求知欲;感受成功的快樂,體驗獨自克服困難、解決數學問題的過程,有克服困難的勇氣,具備學好數學的信心;在運用數學表述和解決問題的過程中,認識數學具有抽象、嚴謹和應用廣泛的特點, 體會數學的價值;敢于發表自己的想法、勇于質疑、敢于創新,養成認真勤奮、獨立思考、合作交流等學習習慣,形成嚴謹求實的科學態度。筆者在幾何教學中主要通過以下三個方面實踐嘗試。 1.形成應用幾何基本圖形進行“舉一反三”的能力 通過強調幾何基本圖形的理解, 不但能開闊學生的解題思路,而且啟發學生建立了課本例題,習題之間的聯系,使學生在做題時做到“遇新題,憶舊題,多思考,善聯想、多變換、找規律”。 例如:求證:順次連接四邊形各邊中點所得的四邊形是平行四邊形。 這是一道應用三角形中位線基本圖形的證明, 教師在組織學生證明后,可以不失時機地進行變式,調動起學生的思維興趣,培養學生舉一反三的能力。 變式(1)順次連接矩形各邊中點所得四邊形是什么圖形? 變式(2)順次連接等腰梯形各邊中點所得四邊形是什么圖形? 變式(3)順次連接菱形各邊中點所得四邊形是什么圖形? 變式(4)順次連接正方形各邊中點所得四邊形是什么圖形? 做完以上練習,教師還可以進一步引導學生概括影響組成圖形形狀的本質的東西是什么? 2.養成不斷歸納概括初中幾何常見輔助線的能力 初中幾何常見輔助線的添加,能培養學生思維的獨創性和發散性。牛頓說過:“沒有大膽的猜想就做不出偉大的發現。”中學生的想象力豐富,因此,可以通過已知圖形所提供的結構特點,鼓勵、引導學生大膽地猜想、概括如何添加輔助線,以培養學生的創造性思維和發散思維。 例如:歸納梯形常用輔助線時教師出示以下表格: 4 輔助線作法: 圖形: 添線后基本情 況: 學生在通過系統完整地歸納后,對梯形中常見輔助線的掌握及應用能力達到非常理想的程度。 3.培養學生撰寫數學小論文的能力 在初中階段,新課程標準鼓勵以課題學習方式來進行數學知識的綜合運用。數學課題學習是學生探究問題的一個重要過程,其主要工作由學生自主完成,具有實踐性。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們的自主探索和合作交流過程中真正理解和掌握基本數學知識技能、數學思想方法,獲得廣泛的數學活動經驗。指導學生撰寫數學小論文是師生交流合作,開展數學課題學習的一種很好方式,是新標準的評價體系中的對學生進行多元化評價的一種嘗試。 例如:在學習了探究兩圓位置關系后,我出示了一道中考題:已知圓 O1 和圓 O2 外切,它們的半徑分別為 1cm 和 3cm,那么半徑為 5cm 且與圓 O1 和圓 O2 都相切的圓一共可以做出 個。安排學生課后探究,并以書面小論文的形式上交。有兩位同學合作完成的探究論文不僅寫得很好而且還有創新思考,老師在全班進行了表揚和交流。 論文寫作對于語文以及各門功課的學習都有極大的促進作用,一篇優秀的學生論文是各種知識綜合運用的結果。查資料要上網,就要掌握電腦知識;數據要統計列表,要用到數學的知識;論文要寫得有文采,就要提高語言文字的表達能力;對論文進行美化,則要用到藝術課上學來的技巧最重要的是論文寫作豐富了同學們課余生活,培養了學生主動探究的精神。一篇篇雖稚嫩但卻充滿數學味的小論文體現了數學對同學們的影響和價值,抒寫了同學們學習數學的樂趣,也真正達到培養真才的目的。 總之,在“三真”教育總目標的指引下通過近兩年的實踐,無論是教師的教學行為和教學理念,還是學生的學習態度和學習方法都有了很大的改變和提高。在初步形成的研究成果下,應繼續深化“三真”教育的內涵,在數學教學中進一步實現“真情、真實、真才”的有機結合。 5談怎樣培養學生作圖能力怎樣培養學生基礎的作圖能力,我認為必須從學生作圖的行為習慣入手,培養正確的作圖方法。1、課前讓學生準備齊全作圖工具,如三角板、圓規、量角器、直尺、橡皮擦、鉛筆直等。2、養成正確的作圖姿勢:身子坐端正,手放平,握筆的手松緊適度,兩手配合,畫時手不抖動,圖不變形、不走樣。3、要注意作圖工具的正確使用。作圖工具的使用看似簡單,但有其科學性。如使用直尺,必須將它放平在桌上,練習本下不能放異物,練習本不能墊得過厚,也不能過簿。因為過簿鉛筆會劃破紙張,過厚作圖工具易滑動,使圖形走樣。畫平行線時,用直尺和兩個三角板。直尺在上,兩三角板兩直角邊跟貼放入下,一板移動畫線。使用時圓規,先擰緊調半徑長度的螺絲,用有釘子的一腳確定圓心,手捏上部頂帽轉動畫圈。4、要掌握作圖的基本步驟,使學生懂得為什么要這樣畫。中低年級以識圖為重點,以作圖為輔助。高年級要求學生掌握作圖技巧,能獨立作圖。作圖要視題目的難易而確定線段的擺放位置,條數,數據的標放位置。一般中低年級以畫一根線段為多;高年級的作圖就較為復雜些。如三種統計圖的畫法,平面圖形的畫法,平面圖形的輔助線的畫法,高的畫法(特別是作鈍角三角形反向延長線的高)。要讓學生知道為什么要這樣畫,它有什么優點等。5、要注意虛、實線,直角符號的應用。如畫出平行四邊形的高用虛線,為畫圖而作的輔助線用虛線表示。初中生數學識圖能力的培養探究王瑩瑩 【摘要】:為了適應時代發展對人才培養的需要,數學課程要特別注重發展學生的空間觀念和幾何直觀。數學識圖能力作為一種特殊的數學能力,對初中生的幾何學習乃至數學學習都有著至關重要的作用;同時有利于學生更好地認識生活空間,感受數學與現實生活的密切聯系,使數學真正成為對生活有用的數學。本文的研究問題為:初中生的數學識圖能力現狀如何?培養初中生數學識圖能力的主要途徑有哪些?影響培養初中生數學識圖能力的因素有哪些?對數學圖形圖象課堂教學的啟示是什么? 本文在梳理國內外關于數學圖形研究現狀的基礎上,對什么是“數學識圖能力”進行思考,圍繞學生對數學圖形大小和位置直觀感知能力、分解復雜圖形為基本圖形能力、分析圖形變換(包括圖形的展開與折疊、旋轉、對稱等)能力、視圖與物圖轉化能力、數學圖形規律的探究能力、數學圖形圖象的實際運用能力六個方面編制測試問卷,選擇濟南市濟南中學的180名初一學生作為調查對象,對初中生數學識圖能力狀況進行了調查研究。為了探究培養初中生數學識圖能力的主要途徑及影響培養初中生數學識圖能力的因素,筆者在問卷測試前,對該校20名初中教師和180名學生進行了問卷調查。并結合本研究的結論,對如何在數學圖形圖象的課堂教學中培養與發展初中生的數學識圖能力提出了七大培養原則和四條培養策略,以期對數學圖形圖象教學有所幫助。 本文的基本研究結論如下: 1.調查問卷的結果表明:基于多媒體技術的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 發酵法生產維生素及Β-胡蘿卜素項目投資風險評估報告
- 數字產業集聚對區域經濟韌性的影響分析
- 物聯網連接技術-洞察闡釋
- 個性化語音交互系統的開發-洞察闡釋
- 黔南民族幼兒師范高等專科學校《流體力學實驗》2023-2024學年第二學期期末試卷
- 2025至2030年中國煙灰缸行業市場行情監測及投資前景研判報告
- 數字經濟與綠色創新的互動關系
- 體育特長生培訓行業深度調研及發展項目商業計劃書
- 隨機方差模型-洞察闡釋
- 湖南企業管理培訓課件網
- 停車位管理制度細則
- 《關稅政策解析》課件
- s標準管理制度
- 新材料與制造技術的研究與創新
- 2023海上風電場土建工程施工質量檢驗標準
- 2025江西南昌市江銅產融社會招聘1人筆試參考題庫附帶答案詳解
- 2024年數據錄入的注意事項試題及答案
- 2025屆福建省廈門市高三下學期第二次質檢(二模)歷史試題
- 船舶安全隱患排查
- 竹編非遺面試題及答案
- 離婚協議書 標準版電子版(2025年版)
評論
0/150
提交評論