2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷含解析_第1頁
2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷含解析_第2頁
2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷含解析_第3頁
2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷含解析_第4頁
2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年蘇省南京市聯合體重點達標名校初中數學畢業考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.方程x2﹣kx+1=0有兩個相等的實數根,則k的值是()A.2 B.﹣2 C.±2 D.02.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形3.下列運算正確的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2?a3=a6 D.(2+3)2=54.如圖,嘉淇同學拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元5.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.6.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°7.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°8.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.9.一組數據:6,3,4,5,7的平均數和中位數分別是()A.5,5 B.5,6 C.6,5 D.6,610.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘二、填空題(本大題共6個小題,每小題3分,共18分)11.的相反數是______,的倒數是______.12.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應中線的比為_____.13.已知直線y=kx(k≠0)經過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.14.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.15.如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點D,使AD=4,將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,連接BP,取BP的中點F,連接CF,當點P旋轉至CA的延長線上時,CF的長是_____,在旋轉過程中,CF的最大長度是_____.16.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.三、解答題(共8題,共72分)17.(8分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數量關系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.18.(8分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:(1)m=;(2)請補全上面的條形統計圖;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為;(4)已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.19.(8分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;(2)求證:(3)若BC=AB,求tan∠CDF的值.20.(8分)如圖,已知直線AB經過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?21.(8分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產甲、乙兩種產品的件數與所用時間的關系見下表:生產甲產品數(件)生產乙產品數(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產一件甲種產品得1.50元,每生產一件乙種產品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元,請根據以上信息,解答下列問題:(1)小王每生產一件甲種產品,每生產一件乙種產品分別需要多少分鐘;(2)2018年1月工廠要求小王生產甲種產品的件數不少于60件,則小王該月收入最多是多少元?此時小王生產的甲、乙兩種產品分別是多少件?22.(10分)閱讀下列材料:數學課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據是________.23.(12分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠發展的戰略高度作出的促進人口長期均衡發展的重大舉措.二孩政策出臺后,某家庭積極響應政府號召,準備生育兩個小孩(假設生男生女機會均等,且與順序無關).(1)該家庭生育兩胎,假設每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.24.解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為_____.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據已知得出△=(﹣k)2﹣4×1×1=0,解關于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數,a≠0),當b2﹣4ac>0時,方程有兩個不相等的實數根;當b2﹣4ac=0時,方程有兩個相等的實數根;當b2﹣4ac<0時,方程無實數根.2、C【解析】

根據平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵3、B【解析】

利用合并同類項對A進行判斷;根據冪的乘方和同底數冪的除法對B進行判斷;根據同底數冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.4、A【解析】

可設1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據等量關系列出方程組,再求解即可.【詳解】設1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【點睛】本題考查了二元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系設出未知數,列出方程組.5、C【解析】

連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,

∵AB是直徑,

∴∠AEB=90°,即AE⊥BC,

∵EB=EC,

∴AB=AC,

∴∠C=∠B,

∵∠BAC=50°,

∴∠C=(180°-50°)=65°,

故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質、線段的垂直平分線的性質定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.6、A【解析】

根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【點睛】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵7、D【解析】

根據線段垂直平分線性質得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點睛】本題考查了等腰三角形的性質,線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.8、A【解析】

根據輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.9、A【解析】試題分析:根據平均數的定義列式計算,再根據找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數解答.平均數為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數為:1.故選A.考點:中位數;算術平均數.10、D【解析】分析:根據圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2,【解析】試題分析:根據相反數和倒數的定義分別進行求解,﹣2的相反數是2,﹣2的倒數是.考點:倒數;相反數.12、3:4【解析】由于相似三角形的相似比等于對應中線的比,∴△ABC與△DEF對應中線的比為3:4故答案為3:4.13、0<m<【解析】【分析】利用待定系數法得出直線解析式,再得出平移后得到的直線,求與坐標軸交點的坐標,轉化為直角三角形中的問題,再由直線與圓的位置關系的判定解答.【詳解】把點(12,﹣5)代入直線y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)個單位后得到的直線l所對應的函數關系式為y=﹣x+m(m>0),設直線l與x軸、y軸分別交于點A、B,(如圖所示)當x=0時,y=m;當y=0時,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,過點O作OD⊥AB于D,∵S△ABO=OD?AB=OA?OB,∴OD?=×m×m,∵m>0,解得OD=m,由直線與圓的位置關系可知m<6,解得m<,故答案為0<m<.【點睛】本題考查了直線的平移、直線與圓的位置關系等,能用含m的式子表示出原點到平移后的直線的距離是解題的關鍵.本題有一定的難度,利用數形結合思想進行解答比較直觀明了.14、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.15、,+2.【解析】

當點P旋轉至CA的延長線上時,CP=20,BC=2,利用勾股定理求出BP,再根據直角三角形斜邊上的中線等于斜邊的一半,可得CF的長;取AB的中點M,連接MF和CM,根據直角三角形斜邊上的中線等于斜邊的一半,可得CM的長,利用三角形中位線定理,可得FM的長,再根據當且僅當M、F、C三點共線且M在線段CF上時CF最大,即可得到結論.【詳解】當點P旋轉至CA的延長線上時,如圖2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中點是F,∴CF=BP=.取AB的中點M,連接MF和CM,如圖2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M為AB中點,∴CM=AB=,∵將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,∴AP=AD=4,∵M為AB中點,F為BP中點,∴FM=AP=2.當且僅當M、F、C三點共線且M在線段CF上時CF最大,此時CF=CM+FM=+2.故答案為,+2.【點睛】考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了直角三角形斜邊上的中線等于斜邊的一半以及勾股定理.根據題意正確畫出對應圖形是解題的關鍵.16、【解析】

根據圖形可得每增加一個金魚就增加6根火柴棒即可解答.【詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數是8+6(n-1)=6n+2.故答案為6n+2【點睛】本題考查數字規律問題,通過歸納與總結,得到其中的規律是解題關鍵.三、解答題(共8題,共72分)17、(1)BC=BD+CE,(2);(3).【解析】

(1)證明△ADB≌△EAC,根據全等三角形的性質得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數量關系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據全等三角形的性質得到CE=AF,ED=DF,設AF=x,DF=y,根據CB=4,AB=2,列出方程組,求出的值,根據勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點睛】考查全等三角形的判定與性質,勾股定理,二元一次方程組的應用,熟練掌握全等三角形的判定與性質是解題的關鍵.18、(1)150,(2)36°,(3)1.【解析】

(1)根據圖中信息列式計算即可;(2)求得“足球“的人數=150×20%=30人,補全上面的條形統計圖即可;(3)360°×乒乓球”所占的百分比即可得到結論;(4)根據題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數=150×20%=30人,補全上面的條形統計圖如圖所示;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學生最喜愛足球活動.故答案為150,36°,1.【點睛】本題考查了條形統計圖,觀察條形統計圖、扇形統計圖獲得有效信息是解題關鍵.19、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質即可得到結論;(3)設AB=2x,結合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點睛:解答本題第3問的要點是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.20、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】

(1)首先求得點A的坐標,然后利用待定系數法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設M(a,a2),得MN=a2+1,然后根據點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設直線的函數關系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,

當x=8時,y=16,

∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=6時,取最大值1,∴當M的橫坐標為6時,MN+3PM的長度的最大值是121、(1)生產一件甲產品需要15分,生產一件乙產品需要20分;(2)小王該月最多能得3544元,此時生產甲、乙兩種產品分別60,555件.【解析】

(1)設生產一件甲種產品需x分,生產一件乙種產品需y分,利用待定系數法求出x,y的值.

(2)設生產甲種產品用x分,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論