




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年浙江省杭州市高橋中考數(shù)學(xué)全真模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,一個(gè)斜邊長(zhǎng)為10cm的紅色三角形紙片,一個(gè)斜邊長(zhǎng)為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm22.如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%3.鄭州某中學(xué)在備考2018河南中考體育的過(guò)程中抽取該校九年級(jí)20名男生進(jìn)行立定跳遠(yuǎn)測(cè)試,以便知道下一階段的體育訓(xùn)練,成績(jī)?nèi)缦滤荆撼煽?jī)(單位:米)2.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運(yùn)動(dòng)員成績(jī)的眾數(shù)是5B.這些運(yùn)動(dòng)員成績(jī)的中位數(shù)是2.30C.這些運(yùn)動(dòng)員的平均成績(jī)是2.25D.這些運(yùn)動(dòng)員成績(jī)的方差是0.07254.一個(gè)正方形花壇的面積為7m2,其邊長(zhǎng)為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<45.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過(guò)原點(diǎn),那么平移的過(guò)程為()A.向下平移3個(gè)單位 B.向上平移3個(gè)單位C.向左平移4個(gè)單位 D.向右平移4個(gè)單位6.射擊訓(xùn)練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績(jī)最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁7.某機(jī)構(gòu)調(diào)查顯示,深圳市20萬(wàn)初中生中,沉迷于手機(jī)上網(wǎng)的初中生約有16000人,則這部分沉迷于手機(jī)上網(wǎng)的初中生數(shù)量,用科學(xué)記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人8.如圖,BC是⊙O的直徑,A是⊙O上的一點(diǎn),∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°9.學(xué)校小組名同學(xué)的身高(單位:)分別為:,,,,,則這組數(shù)據(jù)的中位數(shù)是().A. B. C. D.10.小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上B.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等D.以上均不正確11.2012﹣2013NBA整個(gè)常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說(shuō)法錯(cuò)誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小12.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_(kāi)____.14.已知,正六邊形的邊長(zhǎng)為1cm,分別以它的三個(gè)不相鄰的頂點(diǎn)為圓心,1cm長(zhǎng)為半徑畫(huà)弧(如圖),則所得到的三條弧的長(zhǎng)度之和為_(kāi)_________cm(結(jié)果保留π).15.如圖,數(shù)軸上點(diǎn)A表示的數(shù)為a,化簡(jiǎn):a_____.16.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_(kāi)____.17.計(jì)算=_____.18.如果2,那么=_____(用向量,表示向量).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點(diǎn),DE⊥AM于點(diǎn)E.求證:△ADE∽△MAB;求DE的長(zhǎng).20.(6分)如圖,已知正方形ABCD,E是AB延長(zhǎng)線上一點(diǎn),F(xiàn)是DC延長(zhǎng)線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過(guò)點(diǎn)B作FG的平行線,交DA的延長(zhǎng)線于點(diǎn)N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.21.(6分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說(shuō)明理由;(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.22.(8分)如圖,拋物線y=ax2+bx(a<0)過(guò)點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=1.求拋物線的函數(shù)表達(dá)式.當(dāng)t為何值時(shí),矩形ABCD的周長(zhǎng)有最大值?最大值是多少?保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.23.(8分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點(diǎn)A處測(cè)得公路對(duì)面的點(diǎn)C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點(diǎn)B處測(cè)得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)24.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過(guò)點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長(zhǎng)線于點(diǎn)F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長(zhǎng).25.(10分)隨著社會(huì)經(jīng)濟(jì)的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學(xué)興趣小組隨機(jī)抽取了我市某單位部分職工進(jìn)行調(diào)查,對(duì)職工購(gòu)車情況分4類(A:車價(jià)40萬(wàn)元以上;B:車價(jià)在20—40萬(wàn)元;C:車價(jià)在20萬(wàn)元以下;D:暫時(shí)未購(gòu)車)進(jìn)行了統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:(1)調(diào)查樣本人數(shù)為_(kāi)_________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計(jì)圖中的圓心角度數(shù)是________;(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)該單位甲、乙兩個(gè)科室中未購(gòu)車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫(huà)樹(shù)狀圖的方法,求選出的2人來(lái)自不同科室的概率.26.(12分)解方程(2x+1)2=3(2x+1)27.(12分)某數(shù)學(xué)興趣小組為測(cè)量如圖(①所示的一段古城墻的高度,設(shè)計(jì)用平面鏡測(cè)量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過(guò)平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測(cè)得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計(jì)):請(qǐng)你設(shè)計(jì)一個(gè)測(cè)量這段古城墻高度的方案.要求:①面出示意圖(不要求寫(xiě)畫(huà)法);②寫(xiě)出方案,給出簡(jiǎn)要的計(jì)算過(guò)程:③給出的方案不能用到圖②的方法.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積計(jì)算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍(lán)兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點(diǎn)睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.2、B【解析】
根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯(cuò)誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯(cuò)誤的,故選B.【點(diǎn)睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問(wèn)題.3、B【解析】
根據(jù)方差、平均數(shù)、中位數(shù)和眾數(shù)的計(jì)算公式和定義分別對(duì)每一項(xiàng)進(jìn)行分析,即可得出答案.【詳解】由表格中數(shù)據(jù)可得:A、這些運(yùn)動(dòng)員成績(jī)的眾數(shù)是2.35,錯(cuò)誤;B、這些運(yùn)動(dòng)員成績(jī)的中位數(shù)是2.30,正確;C、這些運(yùn)動(dòng)員的平均成績(jī)是2.30,錯(cuò)誤;D、這些運(yùn)動(dòng)員成績(jī)的方差不是0.0725,錯(cuò)誤;故選B.【點(diǎn)睛】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計(jì)算公式是本題的關(guān)鍵,平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù));方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量.4、C【解析】
先根據(jù)正方形的面積公式求邊長(zhǎng),再根據(jù)無(wú)理數(shù)的估算方法求取值范圍.【詳解】解:∵一個(gè)正方形花壇的面積為,其邊長(zhǎng)為,則a的取值范圍為:.故選:C.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)無(wú)理數(shù)的理解,會(huì)估算無(wú)理數(shù)的大小是解題的關(guān)鍵.5、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過(guò)原點(diǎn),若左右平移n個(gè)單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個(gè)單位或向右平移3個(gè)單位后拋物線經(jīng)過(guò)原點(diǎn);若上下平移m個(gè)單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個(gè)單位后拋物線經(jīng)過(guò)原點(diǎn),故選A.6、D【解析】
根據(jù)方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績(jī)最穩(wěn)定,故選D.【點(diǎn)睛】此題主要考查了方差,關(guān)鍵是掌握方差越小,穩(wěn)定性越大.7、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】用科學(xué)記數(shù)法表示16000,應(yīng)記作1.6×104,故選A.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、A【解析】
根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進(jìn)而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點(diǎn)睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.9、C【解析】
根據(jù)中位數(shù)的定義進(jìn)行解答【詳解】將5名同學(xué)的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數(shù)據(jù)的中位數(shù)是152.故選C.【點(diǎn)睛】本題主要考查中位數(shù),解題的關(guān)鍵是熟練掌握中位數(shù)的定義:一組數(shù)據(jù)按從小到大(或從大到小)的順序依次排列,處在中間位置的一個(gè)數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))稱為中位數(shù).10、A【解析】
過(guò)兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,因?yàn)槭莾砂淹耆嗤拈L(zhǎng)方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上可得OP平分∠AOB【詳解】如圖所示:過(guò)兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,∵兩把完全相同的長(zhǎng)方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上),故選A.【點(diǎn)睛】本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上這一判定定理.11、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機(jī)會(huì)的大小的概念,只是表示發(fā)生的機(jī)會(huì)的大小,機(jī)會(huì)大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項(xiàng)正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項(xiàng)錯(cuò)誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項(xiàng)錯(cuò)誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項(xiàng)錯(cuò)誤。故選A。12、C【解析】分析:根據(jù)一個(gè)空間幾何體的主視圖和左視圖都是長(zhǎng)方形,可判斷該幾何體是柱體,進(jìn)而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長(zhǎng)方形,故該幾何體是一個(gè)柱體,又∵俯視圖是一個(gè)三角形,故該幾何體是一個(gè)三棱柱,故選C.點(diǎn)睛:本題考查的知識(shí)點(diǎn)是三視圖,如果有兩個(gè)視圖為三角形,該幾何體一定是錐,如果有兩個(gè)矩形,該幾何體一定柱,其底面由第三個(gè)視圖的形狀決定.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】
根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.14、【解析】考點(diǎn):弧長(zhǎng)的計(jì)算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個(gè)內(nèi)角,以及弧長(zhǎng)計(jì)算公式.解:方法一:先求出正六邊形的每一個(gè)內(nèi)角==120°,所得到的三條弧的長(zhǎng)度之和=3×=2πcm;方法二:先求出正六邊形的每一個(gè)外角為60°,得正六邊形的每一個(gè)內(nèi)角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長(zhǎng)度之和為2πcm.15、1.【解析】
直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進(jìn)而化簡(jiǎn)即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點(diǎn)睛】本題主要考查了二次根式的性質(zhì)與化簡(jiǎn),正確得出a的取值范圍是解題的關(guān)鍵.16、72°【解析】
首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵17、0【解析】分析:先計(jì)算乘方、零指數(shù)冪,再計(jì)算加減可得結(jié)果.詳解:1-1=0故答案為0.點(diǎn)睛:零指數(shù)冪成立的條件是底數(shù)不為0.18、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點(diǎn)睛:本題看成平面向量、一元一次方程等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考基礎(chǔ)題.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M(jìn)是邊BC的中點(diǎn),BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.20、(1)見(jiàn)解析;(2)四邊形BFGN是菱形,理由見(jiàn)解析.【解析】
(1)過(guò)F作FH⊥BE于點(diǎn)H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點(diǎn),可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【詳解】(1)證明:過(guò)F作FH⊥BE于H點(diǎn),在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點(diǎn),∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點(diǎn)睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關(guān)鍵.在(2)中證得△ABN≌△HFE是解題的關(guān)鍵.21、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長(zhǎng)度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過(guò)程中,分兩個(gè)階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過(guò)點(diǎn)作軸于點(diǎn)M,則,,.過(guò)點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個(gè)單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長(zhǎng),射線交交于,則.在向右平移的過(guò)程中:(1)當(dāng)時(shí),如答圖2所示:設(shè)與交于點(diǎn),可得,.設(shè)與的交點(diǎn)為,則:.解得,∴..(2)當(dāng)時(shí),如答圖3所示:設(shè)分別與交于點(diǎn)、點(diǎn).∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.22、(1);(2)當(dāng)t=1時(shí),矩形ABCD的周長(zhǎng)有最大值,最大值為;(3)拋物線向右平移的距離是1個(gè)單位.【解析】
(1)由點(diǎn)E的坐標(biāo)設(shè)拋物線的交點(diǎn)式,再把點(diǎn)D的坐標(biāo)(2,1)代入計(jì)算可得;
(2)由拋物線的對(duì)稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時(shí)AD=,根據(jù)矩形的周長(zhǎng)公式列出函數(shù)解析式,配方成頂點(diǎn)式即可得;
(3)由t=2得出點(diǎn)A、B、C、D及對(duì)角線交點(diǎn)P的坐標(biāo),由直線GH平分矩形的面積知直線GH必過(guò)點(diǎn)P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設(shè)拋物線解析式為,當(dāng)時(shí),,點(diǎn)的坐標(biāo)為,將點(diǎn)坐標(biāo)代入解析式得,解得:,拋物線的函數(shù)表達(dá)式為;(2)由拋物線的對(duì)稱性得,,當(dāng)時(shí),,矩形的周長(zhǎng),,,,當(dāng)時(shí),矩形的周長(zhǎng)有最大值,最大值為;(3)如圖,當(dāng)時(shí),點(diǎn)、、、的坐標(biāo)分別為、、、,矩形對(duì)角線的交點(diǎn)的坐標(biāo)為,直線平分矩形的面積,點(diǎn)是和的中點(diǎn),,由平移知,是的中位線,,所以拋物線向右平移的距離是1個(gè)單位.【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及平移變換的性質(zhì)等知識(shí)點(diǎn).23、公路的寬為20.5米.【解析】
作CD⊥AE,設(shè)CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過(guò)點(diǎn)C作CD⊥AE于點(diǎn)D,設(shè)公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點(diǎn)睛】本題考查了直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.24、(1)證明見(jiàn)解析;(2)2.【解析】
(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點(diǎn)睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能硬件開(kāi)發(fā)與合作協(xié)議
- 老城區(qū)污水管網(wǎng)改造工程可行性研究報(bào)告(模板)
- 建筑企業(yè)勞動(dòng)合同書(shū)
- 固廢綜合利用示范基地項(xiàng)目規(guī)劃設(shè)計(jì)方案(模板范文)
- 古代漢語(yǔ)常用句式解析與應(yīng)用教學(xué)教案
- 提升基層中醫(yī)藥服務(wù)的公眾認(rèn)知與參與度
- 護(hù)理基礎(chǔ)與臨床護(hù)理技能考核題庫(kù)概述
- 家校社協(xié)同推動(dòng)體育特色育人模式的策略
- 農(nóng)民合作社資產(chǎn)收益協(xié)議
- 2025年應(yīng)急管理專業(yè)考研試題及答案
- 德陽(yáng)研學(xué)旅行課程的融合開(kāi)發(fā)與實(shí)踐發(fā)展策略研究
- 病理學(xué)考試題庫(kù)
- 2025年全國(guó)普通高校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試卷(新高考Ⅰ卷)含答案
- 事業(yè)單位考試(面試)試題附答案
- HYDRUS-2D3D學(xué)習(xí)手冊(cè)資料
- 數(shù)字化轉(zhuǎn)型項(xiàng)目管理試題及答案
- T/CSPSTC 75-2021微動(dòng)探測(cè)技術(shù)規(guī)程
- 【語(yǔ)文】第23課《“蛟龍”探海》課件 2024-2025學(xué)年統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
- 大部分分校:地域文化形考任務(wù)一-國(guó)開(kāi)(CQ)-國(guó)開(kāi)期末復(fù)習(xí)資料
- 2024年江蘇省南通市中考地理試題(含答案)
- 2024年上海市中考數(shù)學(xué)真題試卷及答案解析
評(píng)論
0/150
提交評(píng)論