




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ofAgentic
Supervision
TheFuture
ΛRFΛCT
AIISABOUTPEOPLE
WEACCELERATEDATAANDAIADOPTIONTOPOSITIVELYIMPACT
PEOPLEANDORGANIZATIONS.
25
COUNTRIES
1700
EMPLOYEES
+1000
CLIENTS
Artefactisagloballeaderinconsultingservices,specializedindatatransformation
anddata&digitalmarketing,fromstrategytothedeploymentofAIsolutions.
Weareofferingauniquecombinationofinnovation(Art)anddatascience(Fact).
STRATEGY&TRANSFORMATION|AIACCELERATION|DATAFOUNDATIONS&BI
IT&DATAPLATFORMS|MARKETINGDATA&DIGITAL
Executivesummary
LastFebruary,wepublished“TheFutureofWorkwithAI”,ourfirststudyonAgenticAI.WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:AgenticSupervision.Duringtheindustrialrevolution,machinesreplacedhumansonmanualtasks,butnewjobsappearedsuchasmachinepurchasing,operationalsupervisionandmaintenance.WithAgenticAI,cognitivejobswillbereplacedbyotherhigher-levelandmoreproductivecognitivejobs.ThisstudyintendstodeepdiveintotheearlydaysofAgenticSupervisionandtodrawtheoutlineoftheFutureofSupervisionintermsofAgentlifecyclemanagement,governanceandsupervisiontooling.
TogatherthecurrentstateofAgenticSupervision,wein-terviewed14enterprisesand5ArtefactAgenticProductManagers&Engineers.WealsocontactedkeyAgenticSupervisionproviders,includingmajorData&AIplatformswithyearsofsoftwaresupervisionexperience(suchasGoogleandMicrosoft)aswellasspecializedstart-ups(WB,Giskard,RobustIntelligence…).
ThefirstinsightwefoundisthatwhileAgenticSupervisionextendstheprinciplesestablishedinDevOps(softwareop-erations),DataOps(dataoperations),andMLOps(MachineLearningoperations),itdramaticallyincreasesthedemandforrobustgovernancetokeepAIAgentsalignedandundercontrol.Indeed,with“softwarethatstartstothink”,unseenrisksareemerging,suchashallucination,reasoningerrors,inappropriatetone,intellectualpropertyinfringementorevenpromptjacking.Mitigatingthesereliability,behavioral,regulatoryandsecurityrisksnowrequiresgovernancethatisnotonlymorerigorousbutalsobroaderthanwhathaspreviouslybeenappliedtotechproducts.
Thismarkedlygreaterneedforgovernanceisthechal-lengethatmaydefinetheemergingoperationalparadigmof“AgentOps”.Interestingly,AgentOpswillneedtobuilduponeachorganization’sexistingDevOps,DataOps,andMLOpsfoundationsandgovernance,andcompanieslag-
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
“WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:
AgenticSupervision.”
gingintheseoperationaldomainswillhavetobridgeanygapsintheseareaswhilesettingtheirAgenticgovernanceframework.
Thesecondmajorchallengeidentifiedbyourinterview-eesistheneedtostrengthentheirAIsupervisiontooling.ManyarecurrentlyrelyingonexistingRPAandDev/Data/MLOpstools,orexperimentingwithcustom-builtsolutionsastheysearchformoresustainable,long-termoptions.Theabundanceofearly-stagetoolsandtheneedtoenvisionacohesive,end-to-endsupervisionsystemthatintegratesmultiplecomponents,promptedustoexplorethetechno-logicaldimensionsofagenticsupervisioningreaterdepth.AswithanyTechOpsframework,AgentOpssupervisioninvolvesthreefundamentalstages:(1)Observe,(2)Evaluate,and(3)Monitorandmanageincidents.Whilethethirdstagerepresentsthelargestsupervisioneffortandtime,thefirsttwoareessentialtoensuringeffectiveriskmanagement.Withnewcategoriesofriskstomonitorandconsequently,newlogs,traces,andevaluationmechanismstoestablish,it’sclearwhyintervieweesconsistentlyemphasizedtheneedfortherighttoolstosupportscalableandreliablesupervision.
3
EXECUTIVESUMMARYTHEFUTUREOFAGENTICSUPERVISION
“Supervisionshouldnotbeanafterthought,itmustbe
embeddedearlyintheagent’sdesignanddevelopment.”
Ourresearchintoagenticsupervisiontoolsrevealedthreekeyinsights.First,thereiscurrentlynoall-in-onesolutionavailable.MajorcloudproviderslikeGoogleandMicrosoftareactivelydevelopingandreleasingsupervisiontoolsandframeworksaimedatcoveringthefullspectrumofsupervisionneedsforteamsbuildingagentsonplatformssuchasVertexAI(Google)andCopilotStudio(Microsoft).Second,agentsupervisionfallsintotwocategories:pro-activeandreactive.Proactivesupervisionisappliedduringdevelopmenttotestagentsagainstdefinedscenariosor,inproduction,tocontinuouslyguardagainstemergingthreats,particularlyintheareaofsecurity,ortocollectaggregatedperformancedata.Itsgoalistoimproveagentbehaviorovertime.Reactivesupervision,ontheotherhand,focusesondetectingandhandlingliveincidents.Althoughbothtypesrelyonobservabilitytoolsandmayusesimilarevaluationmechanisms,theydiffersignificantlyindatasources,eval-uationgranularity,andresponsestrategies.Finally,ourthirdinsightisthatagenticobservability,evaluation,andriskmitigationremaincomplexandrapidlyevolvingdomains.Weanticipatesubstantialadvancementsinsupervisiontoolingoverthecomingyears.
Eachphaseoftheagenticsupervisioncycle;observe,evaluate,andsupervise,presentsitsownsetofchal-lenges.
Observabilityfirstrequiresanticipatingwhatdatatocapture,whichdependsheavilyonhavingaclearlydefinedevaluationandsupervisionstrategy.Withoutthisforesight,teamsriskeithercollectingtoolittleinformationorbeingoverwhelmedbyvast,unstructuredtracesthathindermanualrootcause
analysis.ToolslikeLangSmithandLangChainareincreas-inglyusedtostructureandstreamlinetheobservationofagentbehavior.AnothermajorchallengeliesintheopacityofLLMreasoning,whichmustbecounteredbydeliberatelydesigningagentarchitecturesandworkflowstoensuretraceabilityandtransparency.
EvaluationinagenticAIissignificantlymorecomplexthanintraditionalsoftwareordataqualityassessments.Wheredeterministictestsbasedonobservabilityqueriesaresuf-ficientinclassicalDevOpsandDataOps,agenticsystemsoftenrequireAItoevaluateAI.ThishasledtotheriseofLLM-as-a-judgetechniques;acounterintuitiveapproachwhereonemodelassessestheoutputofanother.Whilethisraisesconcerns(whytrustflawedAItojudgeflawedAI?),studiesshowitoftenproducesmoreconsistentandscalableresultsthanhumanreviewers.Nonetheless,acommonpainpointamongintervieweeswasthedifficultyofbuildingreliablegroundtruthdatasets,expert-curatedquestion-answerpairs,tobenchmarkagentresponses.Humanevaluatorstendtodisagreeandoftenlackcom-pletenessintheiranswers.
Finally,supervisionandmitigationfacechallengesaroundprioritization.Withagrowingnumberofmetricsandalerts,teamscanquicklybecomeoverwhelmed.Standardizedframeworksforalertingandmetricmanagementareamusttobringstructureandclaritytoagenticsupervision.
Onlyahandfuloforganizationshavesuccessfullyestab-lishedeffectivegovernanceandstandardsforagenticAI.Thosewithmaturesoftwareanddatagovernanceframe-
4ΛRFCT
EXECUTIVESUMMARY
“AgenticSupervisionis
theFutureofWorkwithAI!”
workshavehadaheadstart,benefitingfromstrongfoun-dationsandawell-establishedcultureofobservabilityandsupervision.Weobservedthatleveragingexistingsoftware,RPA,anddatasupervisionpractices,processes,andtoolscansignificantlyaccelerateprogress.However,thekeychal-lengeliesinadaptingthesetothedynamicrisksandevolvingtoolsetsspecifictoagenticAI,andinbuildingadedicated,future-readygovernanceframework.Relyingtoolongonlegacyapproaches,includingdeterministiclogicandcus-tom-builttools,canbecomeaconstraint,limitingteamstonarrow,tightlycontrolledagenticworkflowsandpreventingtheadoptionofmoreautonomous,AI-orchestratedagents.
Allintervieweesemphasizedthatthekeytoeffectiveagenticsupervisionisanticipation.Supervisionshouldnotbeanaf-terthought,itmustbeembeddedearlyintheagent’sdesignanddevelopment.Settingupobservabilityandevaluationmechanismsonlyoncetheagentisinproductionistoolate.Identifyingflawsatthatstageoftenmeansreworkingtheentireagent,whichisfarmorecostlythaninvestinginrobustsupervisionfromthestart.
Thegoodnewsisthatavarietyoftestedtoolcombinationsandemergingagenticframeworksarealreadyavailable.WestronglyrecommendthatenterpriseAIgovernanceteamsdefinetheirownstandardizedframeworkandtoolsettobeappliedacrossallagenticdevelopment.Thisbecomesevenmorecriticalasagentsbegintointerconnect,makingsys-tem-widecontrolandsupervisioninteroperabilityessential.
Tosucceed,AIgovernancemustalsoaligncloselywithstrongITandDataGovernancepractices,sinceagents
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
relyonenterprisedataandITsystemsto‘think’andtake‘action.’JustasITanddatagovernancerequiredbusinessinvolvementinthepast,oneofthekeytakeawaysfromourstudyisthatagenticgovernancewilldemandevendeeperbusinessengagement.
Unliketraditionalsoftwareordatasupervision,typicallyhandledbyITordatateams(andinthemostmatureor-ganizations,byabusiness-leddatagovernancenetwork),agentsupervisionwillneedtobebusiness-owned.GiventheinherentunpredictabilityofAIagents,incidentresponsesof-tenrequiredomainexpertise.Asaresult,thebusinessmustbeactivelyinvolvednotjustinmonitoring,butinframingagentbehaviorfromtheoutset.Thisrepresentsasignificantculturalshift:agenticAIblursthelinesbetweenIT,data,andbusiness,andwillrequirenewwaysofworkingbasedoncross-functionalcollaboration.AgenticSupervisionistheFutureofWorkwithAI!
FlorenceBénézit
ExpertPartnerData&AIGovernance
HananOuazan
ManagingPartner,LeadGenerativeAI
5
THANKS&ACKNOWLEDGMENTSTHEFUTUREOFAGENTICSUPERVISION
Methodology
ThisstudyisbasedonaqualitativeresearchapproachdesignedtoexploretheemergingchallengesandgovernancepracticessurroundingtheearlyimplementationsofautonomousAIagentsinorganizations.Bycombiningexpertinterviewswithanin-depthanalysisoftheevolvingtechnologicallandscape,weaimedtomapcurrentpractices,identifyoperationalneeds,andunderstandthevaluepropositionsofavailablesolutionsforagentobservability,evaluation,andsupervision.
Weconducted20+interviewswithprofessionalsdirectlyinvolvedinthedeployment,governance,ortechnicaldevelopmentofagenticsystems.Theseincluded:
—AIandDataLeaders,suchasChiefDataOfficers,HeadsofAI,andDataPlatformDirectors,whosharedtheirstrategicvisiononagentimplementation,riskmanagement,andtheevolutionofdatainfrastructure.
—ProductManagersandInnovationExecutiveswhoofferedinsightsintooperationalusecases,organizationalreadiness,andtheshifttowardagent-centricarchitectures.
—Compliance,Security,andITGovernanceExperts,
whoprovidedcriticalinputonregulatoryexpectations,ethicalrisks,andtheemergingneedforreal-timecontrolmechanismstailoredtoAIagents.
—FoundersandChiefsofScienceofAItoolingcompanies,
whosefeedbackhelpedassessthestateofthemarketacrossthreekeyfunctions:observability,evaluation,andactivesupervisionofAIagents.
Intervieweesrepresentedadiverserangeoforganizations,includingmajorcorporations(insectorssuchasenergy,telecom,pharmaceuticals,andluxury),globaltechplayers,andhigh-growthstartups,ensuringarichandnuancedunderstandingofthetopic.
Inparallel,weconductedasystematicreviewofoveradozentoolsandplatformsofferingcapabilitiesrelevanttoagentgovernanceincludingLangfuse,LangSmith,DeepEval,CopilotStudio,VertexAI,Ragas,Weights&Biases,PRISMEval,DeepEval,RobustIntelligence,Giskard…Eachsolutionwasanalyzedusingadedicatedframeworkthatcross-referencedthreedimensionsofquality(Reliability,BehavioralAlignment,Security)withthreestagesofsupervision(Observation,Evaluation,ActiveSupervision).
Byintegratingreal-worldpractitionerfeedbackwithastructuredtechnologicalbenchmark,thisstudyaimstoofferapragmaticandforward-lookingperspectiveonhowcompaniescanresponsiblyscaleagenticAIsystems.
SpecialThanks&Acknowledgments
ENTERPRISEINTERVIEWEES
YoannBersihand,VPAITechnology,SCHNEIDER
ArthurGarnier,ITChiefofStaff&DataScientist,ARDIANJean-Fran?oisGuilmard,CDO,ACCOR
PaulSaffers,DeputyCDO,VEOLIA
AlexisVaillant,HeadAutomatisation,ORANGE
LeoWang,DataProtectionOfficer,LOUISVUITTONCHINA
AGENTOPSSTACKINTERVIEWEES
AlexCombessie,Co-founder&Co-CEO,GISKARD
SaloméFroment,AccountDirectorFrance,WEIGHTS&BIASESéricHoresnyi,HeadofAIGo-To-Market,GOOGLEFRANCE
AminKarbasi,SeniorDirector,CISCOFOUNDATIONAIRESEARCH(FormerChiefScientistatRobustIntelligence)
Jean-LucLaurent,GenerativeAI/MLSpecialist,GOOGLE
PierrePeigné,Co-founderandChiefScienceOfficer,PRISMEvalChrisVanPelt,Co-founder&CISO,WEIGHTS&BIASES
MarcGardette,DeputyCTO,MICROSOFTFRANCE
6ΛRFCT
TABLEOFCONTENTSTHEFUTUREOFAGENTICSUPERVISION
8
Introduction
9I—AgenticAIrisksareshakingupthetech
governance&supervisiongame.
10AgenticAIorwhensoftwarestartstothink.
14Newtech,oldproblems:whygovernanceisacontinuum.
18Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
24II—ThenewAgentOpsstack:tests,guardrailsandfeedbackloops.
25Pre-productiontestingmustembracevariabilitytoensureagentreadiness.
35Guardrailsprotectoperationsbymanagingrisksduringagentexecution.
41Agentsupervisionspansfromimmediateruntimeactionstofutureplanningdecisions.
45III—SecureandaccelerateAgenticAIwith
standards&globalgovernance.
46Technicalteamsneedclearstandardstobuildanddeployagentsefficientlyandresponsibly.
50Scalingmulti-agentsystemsrequiressharedprotocolsforinteroperabilityandmanageability.
55BusinessteamsneedtoorganizeglobalAIgovernanceandsupervisionprotocols.
58
Conclusion
RFΛCT7
INTRODUCTIONTHEFUTUREOFAGENTICSUPERVISION
Introduction
If,asshowninourpreviousstudy,thefutureofworkwithAIliesinsupervisingAIagents,thenitisessentialtoensurethatthisnewformofworkbecomesabetterexperiencethanthecognitivetasksitreplaces.Manu-allyoverseeingeverystepanddecisionmadebyanagentwouldquicklybecomeatedious,evenmoredrainingtaskthansolvingtheproblemdirectlyourselves.So,howcanwedobetter?Thisstudyexploreswhat’strulyatstakeinagenticsupervisionandhowearlytoolsarebeginningtoshapewhatthisnewtypeofworkmightlooklike.
Wetakeabroadviewofwhatsupervisionmeans.Itstartswithsettingupautomatedloggingandtracingsystems.Italsoinvolvesdesigningevaluationandalert-ingframeworksthatguidethefinalandmostvisiblestep:takingaction(manuallycorrectingmistakes,relaunchinganagentictaskwithbettercontext,mitigatingincidents,identifyingareasforimprovement,andprioritizingde-velopmentefforts).Supervisingagentsmirrorsmanyaspectsofhumancollaboration:definingjobdescriptions(agentobjectives),recruiting(designinganddeployingnewagents),trainingandcoaching(monitoringandup-
datingbehavior),andongoingcollaboration(providingin-putsandsupporttoagents,butalsolearningfromagentsandthebusinesscontexttheycollectintheirmemory).
Webelievethatthesupervisionofasingleagentwillnotfalltojustoneperson.Agenticsupervisionisinherentlymultidimensional.Forinstance,businessoperationsmayoverseerelevanceandaccuracy;ethicsteams,compli-anceandtone;businessleaders,valueandeconomicviability;andcybersecurityteams,safetyandmaliciousattackriskmitigation.
Thisstudyfocusesonbestpracticesforagenticgov-ernance,supervisionprocesses,andthesupportingtools.Whilethisdomainisstillemergingandlikelytoevolvesignificantly,wealsoobservestrongcontinuitywithestablishedpracticesfromsoftware,RPA,data,andMLsupervision.DespitetheuniquechallengesposedbytheprobabilisticbehaviorofAIagents,manystablefoundationsalreadyexist.Embracingthesefoundationsnowiscriticaltoensuringthesuccessofearlyagenticinitiatives.
GeneratedwithChatGPT
8RFCT
THEFUTUREOFAGENTICSUPERVISION
I
AgenticAIrisksareshakingupthetechgovernance&
supervisiongame.
10
I.A
—AgenticAIorWhenSoftwareStartstoThink.
14I.B—NewTech,OldProblems:WhyGovernanceIsaContinuum.
18I.C—Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
9
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
I.AAgenticAIorWhenSoftwareStartstoThink.
AIagentsradicallydifferfromsoftware:theyareautonomousandgoal-driven.
Traditionalsoftwarefollowspredeterminedlogic,andchat-botsoperatewithinrigidtemplatesanddeterministicdeci-siontrees.Incontrast,agenticAIsystemsgomuchfurther:theyinterpretcontext,planactions,andexecutetasksbychainingdecisionsacrossvarioustoolsandAPIs.Theseagentsdon’tsimplywaitforusercommands,theypursueobjectives,evaluateintermediateoutcomes,andadjusttheirstrategiesonthefly.Thisautonomousreasoningmakesthemfeellessliketoolsandmorelikecollaborators.UnlikeRPAbots(RoboticProcessAutomation)orevenstandalonelargelanguagemodels(LLMs),agenticAIsys-temsaregoal-orientedandtask-complete,builttoachieveanoutcome,notjustfollowinstructionsorgeneratethemostlikelynextresponsetoaprompt.
Thismarksafundamentalshiftinthesoftwaredevelop-mentparadigm.Insteadofhardcodinglogicupfront,youdefinegoalsandsetconstraintsandtheagentautono-mouslyconstructsitsownplan.Itmaychainprompts,callAPIs,search&querydatastores,orevencreatesubgoalsasneeded.Ratherthanfollowingafixedpath,thesystemcontinuouslyadaptsitsactionstowhat’smostlikelyto
succeed.Whilethisopensthedoortomajorproductiv-itygains,italsodisruptstraditionalgovernancemodels:Howdoyoutestasystemwhoseoutputschangewitheveryrun?Howcanyoucontrolbehaviorthatvariesovertime,withoutresortingtoconstanthumanoversightandintervention?
“What’sdifferentwithagentsisthattheydon’tjustfollowascript.Theyinterpretinstructions,decidehowtoachievegoals,andofteninfermorethanyoutoldthemto.Thatopensupanewlayerofunpredictability.You’renotsuper-visingcode,you’resupervisingintent.”
ArthurGRENIER
ITChiefofStaff&SeniorDataScientist
ARDIAN
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
AgenticAIcan’tbemade100%predictableandcallsforgovernancereinventiontobalancevalueandrisks.
Thefirstgenerationofautomationtools,includingRPA,macrosandrule-basedbots,offeredpredictabilitybyde-sign.Theymimickeduseractionsstepbystep,withinwell-definedworkflows.EventraditionalMachineLearningsystems,despitetheirinternalcomplexityandprobabilisticnature,operatedwithinclearboundaries:structuredinputsandoutputs.Incontrast,LLMsacceptunstructuredtextinputsandcangenerateawiderangeofoutputs,ofteninunpredictableformats.AgenticAIexacerbatesbehaviorcomplexityevenfurther,agentsnavigatedynamicenviron-ments,drawonmultipleknowledgesources,andadapttheiractionsautonomouslyinrealtime.Theirbehaviorisinfluencednotjustbytrainingdataorpredefinedrules,butbyhumanprompts,toolusage,memorystate,andimplicitknowledgebakedintotheirfoundationmodels.
Legacygovernancemodelsreliedondeterministicin-put-outputcontrol:supplytestdata,verifyresults,tracebugs.Butagenticsystemsblurthatline.Asinglepromptmightleadtohallucinations,multipleAPIcalls,toolinterac-tions,ormemoryrecalls,allpotentiallydifferenteachtime.Thisabstractionbetweenintentandexecutioncreatesagovernancecontrolgapintermsoftechnicalvisibility,pro-cessreadinessandaccountability:rulescanbebypassed,edgecasesoverlooked,andbehavioralregressionsmaygounnoticeduntiltheycauserealissues.
Asaresult,supervisingagentsshiftstheeffortweightfromverifyingcodetoobservingpairsofinputsandoutputs,andpiecingtogethertheirdecision-makingret-rospectively.Asforsoftwareanddatamanagement,thisobservation&analysisefforthappensbothoffline,beforedeploymentongroundtruthorsyntheticdata,andonlineonproductiondata.Allintervieweesstressedtheimportanceofsettingupagenticsupervisionupfronttorigorouslytestagentswhilebeingdevelopedbutalsotoanticipateonlinesupervisionaccountabilityandreme-diationprocesses.
“Unliketraditionalsoftware,AIdevelopmentisfundamentallyprobabilistic.CodeisnolongerthecoreIP,learningis.Whatmattersisknow-ingwhatworks,whatdoesn’t,andwhy.”
ChrisVanPelt
Co-founder&CISO
10ΛRFCTRFΛCT11
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
Thisunpredictabilityshiftintroducestheneedforlarge-scale,statisticalvalue&riskevaluation.
Asaconsequenceofthisunpredictability,theemergenceofagenticAIhasintroducedaprofoundcontrolchallenge:traditionalQA(QualityAssessment)methodsarenolongeradequate.Previously,ahandfulofunittestsmatchingfixedinputstotheirexpecteddeterministicoutputswasenoughtovalidatehardcodedlogic.Incontrast,AIagentsnowrequiretestingacrossabroadspectrumofpossibleinputs,witheachtestscenariorigorouslyandrepeatedlyruntoaccountfortheirnon-deterministicbehavior.Ontopofthat,evaluatingtheirperformancemeansinterpretingun-structuredandvariabletextoutputs,whichmakesitmuchhardertoconsistentlydefineandmeasurewhat“quality”reallymeans.Outputqualitymayneedtobeassessedalongmultipledimensions,includingfactualaccuracy,completeness,security,andalignmentwithuserintent.
Oncequalityisassessed,asecondchallengeemerges:identifyingtherootcausesofagentfailurestosupportim-provementormanagerunincidents.Thisrequiresdetailed,transparentloggingoftheagent’sreasoningprocess,accessibletoadiversesetofsupervisingstakeholders;developers,complianceofficers,businessowners,anddomainexpertsalike.
“Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.”
Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.Asagenticsystemsbegininterpretingcomplexbusinesscontextsandtakingautonomousdecisions,therisksandresponsibilitiesgrow.Whileagentsarealreadybeingdeployedinenterprisepilotsacrossvariousfunctions,thetechnical,organization-al,andlegalinfrastructuresrequiredforrobustsupervisionremainunderdeveloped.Legacygovernanceframeworksareinsufficientandenterprisesneedtoupgradeitwithanew,test-intense,purpose-builtapproach.
“AftertheDigitalandMobilerevolutions,wearenowenteringathirdwaveofmediadisrup-tion:AIagents.Theseagentswillincreasinglymediateourinteractionswithcompanies,
transforminghowwesearch,learn,shop,
work,andcommunicate.Imaginethatin2030,40%ofinteractionsbetweenconsumersandcompanieswillbeshapedbyAI.Buthowdowecontrolthereliabilityandsecurityrisksoftheseagents?”
AlexCOMBESSIE
Co-founder&Co-CEO
}PGiskard
12ΛRFCT
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
TECHNOLOGY
Giskardisanopen-sourcetestingplatformdesignedtoensurethequality,security,andcomplianceofAImodels.Itautomatesthedetectionofvulnerabilitiessuchashallucinations,biases,andsecurityflawsinLLMsandagents.Giskard’sfeaturesincludeautomatedtestgeneration,continuousmonitoring,andcollaborativetoolsthatfacilitatecross-functionalteamworkamongdatascientists,developers,andbusinessstakeholders.
FEATURECOVERAGE
Eliability,Regulatorycompliance,Security,FinOps,Latency
OBSERVE.
Giskarddoesnotofferreal-timeob-servabilityfeaturessuchastrackinglatency,tokenusage,orcostmet-rics.Itsprimaryfocusisonpre-de-ploymenttestingandvulnera
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年心理測評與評估技術考核試題及答案
- 2025年心理學基礎知識測試題及答案
- 2025年航空服務與管理知識測試卷及答案
- 2025年護理學專業實習考核試題及答案
- 2025年生命科學與醫學倫理綜合能力考試卷及答案
- 2025年中國郵政集團有限公司廣西壯族自治區分公司校園招聘筆試模擬試題含答案詳解
- 物資質量監督管理制度
- 物資采購付款管理制度
- 特殊學校宿舍管理制度
- 特殊崗位人員管理制度
- 北京石油化工學院《數據采集與預處理》2022-2023學年第一學期期末試卷
- 物業燃氣安全培訓課件
- 學前兒童衛生與保健-期末大作業:案例分析-國開-參考資料
- 2024年度技術服務合同服務內容及其費用3篇
- 醫療器械經營質量管理制度和工作程序目錄
- 2024年安徽省高校分類對口招生考試數學試卷真題
- 2021年東營市專業技術人員公需科目試題及答案
- 清華版六年級信息技術下冊全冊教案
- 阿克蘇地區國土空間規劃(2021年-2035年)
- 2024年工業廢水處理工(高級)技能鑒定理論考試題庫(濃縮500題)
- 基本公共衛生服務項目村級考核用表
評論
0/150
提交評論