2024屆廣東省徐聞縣市級名校中考數學模試卷含解析_第1頁
2024屆廣東省徐聞縣市級名校中考數學模試卷含解析_第2頁
2024屆廣東省徐聞縣市級名校中考數學模試卷含解析_第3頁
2024屆廣東省徐聞縣市級名校中考數學模試卷含解析_第4頁
2024屆廣東省徐聞縣市級名校中考數學模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省徐聞縣市級名校中考數學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.2.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經過△ABC區域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.3.某市6月份日平均氣溫統計如圖所示,那么在日平均氣溫這組數據中,中位數是()A.8 B.10 C.21 D.224.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數為()A.54°B.36°C.30°D.27°5.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.46.某學習小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如下折線統計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數C.先后兩次擲一枚質地均勻的硬幣,兩次都出現反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過97.﹣0.2的相反數是()A.0.2 B.±0.2 C.﹣0.2 D.28.等腰三角形三邊長分別為,且是關于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或109.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.410.2017年揚中地區生產總值約為546億元,將546億用科學記數法表示為()A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011二、填空題(本大題共6個小題,每小題3分,共18分)11.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.12.實數,﹣3,,,0中的無理數是_____.13.為了了解貫徹執行國家提倡的“陽光體育運動”的實施情況,將某班50名同學一周的體育鍛煉情況繪制成了如圖所示的條形統計圖,根據統計圖提供的數據,該班50名同學一周參加體育鍛煉時間的中位數與眾數之和為_____.14.的相反數是_____,倒數是_____,絕對值是_____15.將一次函數的圖象平移,使其經過點(2,3),則所得直線的函數解析式是______.16.某校園學子餐廳把WIFI密碼做成了數學題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學子餐廳的網絡,那么他輸入的密碼是______.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.18.(8分)如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.19.(8分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數據sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當吊臂底部A與貨物的水平距離AC為5m時,吊臂AB的長為m.(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)20.(8分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.21.(8分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經過點C時,求直線DP的函數解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.22.(10分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數分布直方圖,根據圖1提供的信息,補全圖2中頻數分布直方圖;在這10天中,最低氣溫的眾數是____,中位數是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.23.(12分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.24.某超市銷售一種商品,成本每千克40元,規定每千克售價不低于成本,且不高于80元.經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數表達式;設商品每天的總利潤為W(元),求W與x之間的函數表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

分別根據正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質;平方差公式的幾何背景;平行四邊形的性質.2、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經過點時,拋物線的開口最小,取得最大值拋物線經過△ABC區域(包括邊界),的取值范圍是:當時,拋物線經過點時,拋物線的開口最小,取得最小值拋物線經過△ABC區域(包括邊界),的取值范圍是:故選B.點睛:二次函數二次項系數決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.3、D【解析】分析:根據條形統計圖得到各數據的權,然后根據中位數的定義求解.詳解:一共30個數據,第15個數和第16個數都是22,所以中位數是22.故選D.點睛:考查中位數的定義,看懂條形統計圖是解題的關鍵.4、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.5、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據兩直線平行內錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.6、D【解析】

根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.7、A【解析】

根據相反數的定義進行解答即可.【詳解】負數的相反數是它的絕對值,所以﹣0.2的相反數是0.2.故選A.【點睛】本題主要考查相反數的定義,熟練掌握這個知識點是解題關鍵.8、B【解析】

由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數的關系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B9、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據銳角三角函數的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質、等邊三角形的判定與性質、三角函數;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.10、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.【詳解】解:將546億用科學記數法表示為:5.46×1010,故本題選C.【點睛】本題考查的是科學計數法,熟練掌握它的定義是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

依據∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據相似三角形的性質,即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點睛】本題主要考查了相似三角形的判定與性質,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用.12、【解析】

無理數包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數,根據以上內容判斷即可.【詳解】解:=4,是有理數,﹣3、、0都是有理數,是無理數.故答案為:.【點睛】本題考查了對無理數的定義的理解和運用,注意:無理數是指無限不循環小數,包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數.13、17【解析】∵8是出現次數最多的,∴眾數是8,∵這組數據從小到大的順序排列,處于中間位置的兩個數都是9,∴中位數是9,所以中位數與眾數之和為8+9=17.故答案為17小時.14、,【解析】∵只有符號不同的兩個數是互為相反數,∴的相反數是;∵乘積為1的兩個數互為倒數,∴的倒數是;∵負數得絕對值是它的相反數,∴絕對值是故答案為(1).(2).(3).15、【解析】試題分析:解:設y=x+b,∴3=2+b,解得:b=1.∴函數解析式為:y=x+1.故答案為y=x+1.考點:一次函數點評:本題要注意利用一次函數的特點,求出未知數的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.16、143549【解析】

根據題中密碼規律確定所求即可.【詳解】532=5×3×10000+5×2×100+5×(2+3)=151025924=9×2×10000+9×4×100+9×(2+4)=183654,863=8×6×10000+8×3×100+8×(3+6)=482472,∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案為:143549【點睛】本題考查有理數的混合運算,根據題意得出規律并熟練掌握運算法則是解題關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)【解析】

(1)根據平行四邊形的性質得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據全等三角形的判定推出即可;

(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點睛】本題考查了等邊三角形的性質和判定,全等三角形的判定,平行四邊形的性質和判定等知識點,能綜合運用定理進行推理是解此題的關鍵.18、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標為或或或.【解析】分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關系式,再根據拋物線的對稱軸方程可得a和b的關系,再聯立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設直線BC與對稱軸x=-1的交點為M,此時MA+MC的值最小.把x=-1代入直線y=x+3得y的值,即可求出點M坐標;(3)設P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對稱軸為,且拋物線經過,∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對稱軸的交點為,則此時的值最小,把代入直線得,∴.即當點到點的距離與到點的距離之和最小時的坐標為.(注:本題只求坐標沒說要求證明為何此時的值最小,所以答案未證明的值最小的原因).(3)設,又,,∴,,,①若點為直角頂點,則,即:解得:,②若點為直角頂點,則,即:解得:,③若點為直角頂點,則,即:解得:,.綜上所述的坐標為或或或.點睛:本題綜合考查了二次函數的圖象與性質、待定系數法求函數(二次函數和一次函數)的解析式、利用軸對稱性質確定線段的最小長度、難度不是很大,是一道不錯的中考壓軸題.19、(1)11.4;(2)19.5m.【解析】

(1)根據直角三角形的性質和三角函數解答即可;

(2)過點D作DH⊥地面于H,利用直角三角形的性質和三角函數解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點D作DH⊥地面于H,交水平線于點E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點睛】本題考查解直角三角形、銳角三角函數等知識,解題的關鍵是添加輔助線,構造直角三角形.20、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數的解析式;(2)根據點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數的解析式求得m的值,根據平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點睛】本題為反比例函數的綜合應用,考查的知識點有待定系數法、平行四邊形的性質、中點的求法.在(1)中注意待定系數法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.21、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設直線DP解析式為y=kx+b,將D與B坐標代入求出k與b的值,即可確定出解析式;

(2)①當P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關系式;

②設P(m,1),則PB=PB′=m,根據勾股定理求出m的值,求出此時P坐標即可;

(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標性質求出P坐標即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長方形,∴C(6,1).設此時直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時直線DP解析式為y=x+2;(2)①當點P在線段AC上時,OD=2,高為6,S=6;當點P在線段BC上時,OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時點P的坐標是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根據勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②當BP2=DP2時,此時P2(6,6);③當DB=DP3=8時,在Rt△DEP3中,DE=6,根據勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),綜上,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).點睛:此題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,坐標與圖形性質,等腰三角形的性質,勾股定理,利用了分類討論的思想,熟練掌握待定系數法是解本題第一問的關鍵.22、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】

(1)根據圖1找出8、9、10℃的天數,然后補全統計圖即可;(2)根據眾數的定義,找出出現頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數即為中位數;先求出平均數,再根據方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數在扇形統計圖中所占的度數,然后作出扇形統計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統計圖如圖;(2)根據條形統計圖,7℃出現的頻率最高,為3天,所以,眾數是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數為(7+8)=7.5;平均數為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數,×360°=72°,7℃的度數,×360°=108°,8℃的度數,×360°=72°,10℃的度數,×360°=72°,11℃的度數,×360°=36°,作出扇形統計圖如圖所示.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力.同時考查中位數、眾數的求法:給定n個數據,按從小到大排序,如果n為奇數,位于中間的那個數就是中位數;如果n為偶數,位于中間兩個數的平均數就是中位數.任何一組數據,都一定存在中位數的,但中位數不一定是這組數據量的數.給定一組數據,出現次數最多的那個數,稱為這組數據的眾數.23、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據此求得點K(1,).待定系數法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據此得ON=m-1.再證△ONQ∽△HMQ得=.據此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論