




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1/8試卷第=page11頁,共=sectionpages33頁中考數學初中數學中考常考模型目錄TOC\o"1-2"\h\u知識一三角形中的倒角模型 2模型1.三角形中的倒角模型之“A”字模型 2模型2.三角形中的倒角模型之“8”字模型 2模型3.三角形中的倒角模型之燕尾模型 3模型4.三角形中的倒角模型之雙內角角平分線模型 3模型5.三角形中的倒角模型之一內角一外角雙角平分線模型 4模型6.三角形中的倒角模型之雙外角角平分線模型 5模型7.三角形中的倒角模型之高線與角平分線分線模型 5知識二全等三角形模型 6模型1.全等三角形模型之截長補短模型 6模型2.全等三角形模型之倍長中線模型 6模型3.全等三角形模型之一線三等角模型 7模型4.全等三角形模型之手拉手模型 8模型5.全等三角形模型之半角模型 10模型6.全等三角形模型之90°-90°對角互補型 12模型7.全等三角形模型之60°-120°對角互補型 13模型8.全等三角形模型α—180°-α對角互補型 14模型9.全等三角形模型之正方形中的十字架型 15知識三相似三角形模型 16模型1.相似三角形模型之“A”字模型 16模型2.相似三角形模型之“X”字模型(“8”字模型) 16模型3.相似三角形模型之“AX”字模型(“A8”字模型) 17模型4.相似三角形模型之“母子型”模型(共邊共角模型) 18模型5.相似三角形模型之一線三等角模型 19模型6.相似三角形模型之手拉手模型 20模型7.相似三角形模型之半角模型 21模型8.相似三角形模型之對角互補模型 23模型9.相似三角形模型之矩形中的十字架型 25模型10.相似三角形模型之等邊三角形中的斜十字型 26知識一三角形中的倒角模型模型1.三角形中的倒角模型之“A”字模型如圖,B、C分別是∠DAE兩邊上的點,連結BC,形狀類似于英文字母A,故我們把它稱為“A”字模型。條件:如圖,在?ABC中,∠1、∠2分別為∠3、∠4的外角;結論:①∠1+∠2=∠A+180°;②∠3+∠4=∠D+∠E證明:①∵∠1=∠A+∠ACB∴∠1=∠A+180°-∠2∴∠1+∠2=∠A+180°。②在?ABC中,∠A+∠3+∠4=180°;在?ADE中,∠A+∠D+∠E=180°∴∠3+∠4=∠D+∠E。模型2.三角形中的倒角模型之“8”字模型圖1圖21)8字模型(基礎型)條件:如圖1,AD、BC相交于點O,連接AB、CD;結論:①;②。證明:在?ABO中,∠A+∠B+∠AOB=180°;在?COD中,∠C+∠D+∠COD=180°;∵∠AOB=∠COD∴∠A+∠B=∠C+∠D;在?ABO中,AB<AO+BO;在?COD中,CD<CO+DO;∴AB+CD<AO+BO+CO+DO=AD+BC;∴。2)8字模型(加角平分線)條件:如圖2,線段AP平分∠BAD,線段CP平分∠BCD;結論:2∠P=∠B+∠D證明:∵線段AP平分∠BAD,線段CP平分∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD∵∠BCP+∠P=∠BAP+∠B①∠PAD+∠P=∠PCD+∠D②①+②得2∠P=∠B+∠D,則,即2∠P=∠B+∠D模型3.三角形中的倒角模型之燕尾模型圖1圖2基本模型:條件:如圖1,凹四邊形ABCD;結論:①;②。證明:連接AC并延長至點P;在△ABC中,∠BCP=∠BAC+∠B;在△ACD中,∠DCP=∠CAD+∠D;又∵∠BAD=∠BAC+∠DAC,∠BCD=∠BCP+∠DCP;∴∠BAD+∠B+∠D=∠BCD。延長BC交AD于點P;在△ABQ中,;在△CDQ中,。即:,故。拓展模型1:條件:如圖2,BO平分∠ABC,OD平分∠ADC;結論:∠O=(∠A+∠C)。證明:∵BO平分∠ABC,OD平分∠ADC;∴∠ABO=∠ABC;∠ADO=∠ADC;根據飛鏢模型:∠BOD=∠ABO+∠ADO+∠A=∠ABC+∠ADC+∠A;∠BCD=∠ABC+∠ADC+∠A;∴2∠BOD=∠ABC+∠ADC+2∠A=∠BCD+∠A;即∠O=(∠A+∠C)。模型4.三角形中的倒角模型之雙內角角平分線模型1)兩內角平分線的夾角模型圖1圖2圖3條件:如圖1,在△ABC中,∠ABC和∠ACB的平分線BP,CP交于點P;結論:。證明:∵∠ABC和∠ACB的平分線BP,CP交于點P,∴,。∴∠P=180°-(∠PBC+∠PCB)=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A。2)凸多邊形雙內角平分線的夾角模型1條件:如圖2,BP、CP平分∠ABC、∠DCB,兩條角平分線相交于點P;結論:2∠P=∠A+∠D。證明:∵BP、CP平分∠ABC、∠DCB,∴,。∴∠P=180°-(∠PBC+∠PCB)=180°-(∠ABC+∠DCB)=180°-(360°-∠A-∠D)=(∠A+∠D)。即:2∠P=∠A+∠D。3)凸多邊形雙內角平分線的夾角模型2條件:如圖3,CP、DP平分∠BCD、∠CDE,兩條角平分線相交于點P;結論:。證明:∵CP、DP平分∠BCD、∠CDE,∴,。∴∠P=180°-(∠PCD+∠PDC)=180°-(∠BCD+∠CDE)=180°-(540°-∠A-∠D-∠E)=∠A+∠D+∠E-90°。即:2∠P=∠A+∠D+∠E-180°。模型5.三角形中的倒角模型之一內角一外角雙角平分線模型圖1圖21)一個內角一個外角平分線的夾角模型條件:如圖1,在△ABC中,BP平分∠ABC,CP平分∠ACB的外角,兩條角平分線相交于點P;結論:.證明:∵BP、CP平分∠ABC、∠ACD,∴,。∴∠P=∠PCD-∠PBC=(∠ACD-∠ABC)=∠A。2)一個內角一個外角平分線的夾角模型(累計平分線)條件:如圖2,,∠ABC、∠ACD的平分線相交于點,的平分線相交于點,,的平分線相交于點……以此類推;結論:的度數是.證明:∵BP1、CP1平分∠ABC、∠ACD,∴,。∴∠P1=∠P1CD-∠P1BC=(∠ACD-∠ABC)=∠A=。同理:∠P2=∠P1=,∠Pn=模型6.三角形中的倒角模型之雙外角角平分線模型 圖1圖2圖31)兩外角平分線的夾角模型條件:如圖1,在△ABC中,BO,CO是△ABC的外角平分線;結論:.證明:∵BO、CO平分∠CBE、∠BCF,∴,。∴∠O=180°-(∠OBC+∠OCB)=180°-(∠EBC+∠BCF)=180°-(∠A+∠ACB+∠ABC+∠A)=180°-(180°+∠A)=90°+∠A。2)旁心模型旁心:三角形的一條內角平分線與其他兩個角的外角平分線交于一點條件:如圖2,BD平分∠ABC,CD平分∠ACB的外角,兩條角平分線相交于點D;結論:AD平分∠CAD。證明:如圖3,過點D作DM⊥BA、DN⊥AC、DH⊥BC,∵BD平分∠ABC,CD平分∠ACB的外角,∴DH=DM,DH=DN,∴DM=DN,∴AD平分∠CAD。模型7.三角形中的倒角模型之高線與角平分線分線模型1)條件:如圖1,在中,,分別是的高和角平分線,結論:.2)條件:如圖2,F為的角平分線AE的延長線上的一點,于D,結論:.
圖1圖21)證明:∵平分,∴,∵,∴,∴;2)證明:如圖,過作于,由(2)可知:,,,,,,,,.知識二全等三角形模型模型1.全等三角形模型之截長補短模型條件:AD為△ABC的角平分線,∠B=2∠C。結論:AB+BD=AC。證明:法1(截長法):在線段AC上截取線段AB′=AB,連接DB。∵AD為△ABC的角平分線,∴∠BAD=∠B′AD,∵AD=AD,∴△ABD≌△AB′D(SAS)∴∠B=∠AB′D,BD=B′D,∵∠B=2∠C,∴∠AB′D=2∠C,∴∠AB′D=2∠C,∴∠B′DC=∠C,∴B′C=B′D,∴BD=B′C,∵AB′+B′C=AC,∴AB+BD=AC。法2(補短法):延長AB至點C′使得AC′=AC,連接BC′。∵AD為△ABC的角平分線,∴∠C′AD=∠CAD,∵AD=AD,∴△C′AD≌△CAD(SAS)∴∠C′=∠C,∵∠B=2∠C,∴∠B=2∠C′,∴∠BDC′=∠C′,∴BC′=BD,∵AB+BC′=AC′,∴AB+BD=AC。模型2.全等三角形模型之倍長中線模型1)倍長中線模型(中線型)條件:AD為△ABC的中線。結論:證明:延長AD至點E,使DE=AD,連結CE。∵AD為△ABC的中線,∴BD=CD,∵∠BDA=∠CDE,∴△ABD≌△ECD(SAS)2)倍長類中線模型(中點型)條件:△ABC中,D為BC邊的中點,E為AB邊上一點(不同于端點)。結論:△EDB≌△FDC。證明:延長ED,使DF=DE,連接CF。∵D為BC邊的中點,∴BD=DC,∵∠BDE=∠CDF,∴△EDB≌△FDC(SAS)模型3.全等三角形模型之一線三等角模型1)一線三等角(K型圖)模型(同側型)銳角一線三等角直角一線三等角(“K型圖”)鈍角一線三等角條件:,AE=DE;結論:,AB+CD=BC。2)一線三等角(K型圖)模型(異側型)銳角一線三等角直角一線三等角鈍角一線三等角條件:,AE=DE;結論:,AB-CD=BC。1)(同側型)證明:∵∠AEC=∠B+∠BAE,∠B=∠AED,∴∠AEC=∠AED+∠BAE,∵∠AEC=∠AED+∠CED,∴∠BAE=∠CED。在△ABE和△ECD中,∠B=∠C,∠BAE=∠CED,AE=ED;∴,∴,,∵BC=BE+EC,∴AB+CD=BC。2)(異側型)證明:∵,∴∠ECD=∠ABE,∵,∠AED=∠AEB+∠CED,,∴∠AEB+∠A=∠AEB+∠CED,∴∠A=∠CED,在△ABE和△ECD中,∠A=∠CED,∠ECD=∠ABE,AE=ED;∴,∴,,∵BC=EC-BE,∴AB-CD=BC。模型4.全等三角形模型之手拉手模型1)雙等邊三角形型條件:△ABC和△DCE均為等邊三角形,C為公共點;連接BE,AD交于點F。結論:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。證明:∵△ABC和△DCE均為等邊三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°∴∠BCA+∠ACE=∠ECD+∠ACE,即:∠BCE=∠ACD,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMF,∴∠AFM=∠BCM=60°,過點C作CP⊥AD,CQ⊥BE,則∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS)∴CQ=CP,根據角平分線的判定可得:CF平分∠BFD。2)雙等腰直角三角形型條件:△ABC和△DCE均為等腰直角三角形,C為公共點;連接BE,AD交于點N。結論:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。證明:∵△ABC和△DCE均為等腰直角三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=90°∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMN,∴∠ANM=∠BCM=90°,過點C作CP⊥AD,CQ⊥BE,則∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS)∴CQ=CP,根據角平分線的判定可得:CN平分∠BND。3)雙等腰三角形型條件:BC=AC,CE=CD,∠BCA=∠ECD,C為公共點;連接BE,AD交于點F。結論:①△ACD≌△BCE;②BE=AD;③∠BCM=∠AFM;④CF平分∠BFD。證明:∵∠BCA=∠ECD,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,又∵BC=AC,CE=CD,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMF,∴∠BCM=∠AFM,過點C作CP⊥AD,CQ⊥BE,則∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS)∴CQ=CP,根據角平分線的判定可得:CF平分∠BFD。4)雙正方形形型條件:四邊形ABCD和四邊形CEFG都是正方形,C為公共點;連接BG,ED交于點N。結論:①△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。證明:∵四邊形ABCD和四邊形CEFG都是正方形,∴BC=AC,CE=CG,∠BCD=∠ECG=90°∴∠BCD+∠DCG=∠ECG+∠DCG,即∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,又∵∠CMB=∠DMN,∴∠BCM=∠DNM=90°,過點C作CP⊥DE,CQ⊥BG,則∠CPD=∠CPB=90°,又∵∠CBG=∠CDE,BC=DC,∴△BCQ≌△DCP(AAS)∴CQ=CP,根據角平分線的判定可得:CN平分∠BND。模型5.全等三角形模型之半角模型1)正方形半角模型條件:四邊形ABCD是正方形,∠ECF=45°;結論:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④AEF的周長=2AB;⑤CE、CF分別平分∠BEF和∠EFD。證明:將△CBE繞點C逆時針旋轉90°至△CDG,即△CBE≌△CDG,∴∠ECB=∠GCD,∠B=∠CDG=90°,BE=DG,CE=CG;∵ABCD是正方形,∴∠B=∠CDF=∠BCD=90°,BA=DA;∴∠CDG+∠CDF=180°,故F、D、G共線。∵∠ECF=45°,∴∠BCE+∠DCF=45°,∴∠GCD+∠DCF=∠GCF=45°,∴∠ECF=∠GCF=45°,∵CF=CF,∴△CEF≌△CGF,∴EF=GF,∵GF=DG+DF,∴GF=BE+DF,∴EF=BE+DF,∴AEF的周長=EF+AE+AF=BE+DF+AE+AF=AB+AD=2AB,過點C作CH⊥EF,則∠CHE=90°,∵△CEF≌△CGF,∴CD=CH(全等三角形對應邊上的高相等),再利用HL證得:△CBE≌△CHE,∴∠HEC=∠CBE,同理可證:∠HFC=∠DFC,即CE、CF分別平分∠BEF和∠EFD。2)等腰直角三角形半角模型條件:ABC是等腰直角三角形(∠BAC=90°,AB=AC),∠DAE=45°;結論:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;證明:將△ABD繞點A逆時針旋轉90°至△ACG,即△BAD≌△CAG,∴∠BAD=∠CAG,∠B=∠GCA=45°,AD=AG,BD=CG;∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠CAG+∠EAC=∠GAE=45°,∴∠DAE=∠GAE=45°,∵AE=AE,∴△DAE≌△GAE,∴ED=EG,∵ABC是等腰直角三角形,∴∠ACB=45°,∴∠ECG=90°,∴GE2=GC2+EC2,∴DE2=BD2+EC2;3)等邊三角形半角模型(120°-60°型)條件:ABC是等邊三角形,BDC是等腰三角形,且BD=CD,∠BDC=120°,∠EDF=60°;結論:①△BDE≌△CDG;②△EDF≌△GDF;③EF=BE+CF;④AEF的周長=2AB;⑤DE、DF分別平分∠BEF和∠EFC。證明:將△DBE繞點D順時針旋轉120°至△DCG,即△BDE≌△CDG,∴∠EDB=∠GDC,∠DBE=∠DCG,BE=GC,DE=DG;∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°,∴∠GDC+∠CDF=∠GDF=60°,故∠GDF=∠EDF,∵DF=DF,∴△EDF≌△GDF,∴EF=GF,∵GF=CG+CF,∴GF=BE+CF,∴EF=BE+CF,∴AEF的周長=EF+AE+AF=BE+CF+AE+AF=AB+AC=2AB,過點D作DH⊥EF,DM⊥GF,則∠DHF=∠DMF=90°,∵△EDF≌△GDF,∴DM=DH(全等三角形對應邊上的高相等),再利用HL證得:△DHF≌△DMF,∴∠HFD=∠MFD,同理可證:∠BFD=∠FED,即DE、DF分別平分∠BEF和∠EFC。4)等邊三角形半角模型(60°-30°型)條件:ABC是等邊三角形,∠EAD=30°;結論:①△BDA≌△CFA;②△DAE≌△FAE;③∠ECF=120°;④DE2=(BD+EC)2+;證明:將△ABD繞點A逆時針旋轉60°至△ACF,即△BAD≌△CAF,∴∠BAD=∠CAF,∠B=∠FCA=60°,AD=AF,BD=CF;∵∠DAE=30°,∴∠BAD+∠EAC=30°,∴∠CAF+∠EAC=∠FAE=30°,∴∠DAE=∠FAE=30°,∵AE=AE,∴△DAE≌△FAE,∴ED=EF,∵ABC是等邊三角形,∴∠ACB=60°,∴∠ECF=120°,過點F作FH⊥BC,∴∠FCH=60°,∠CFH=30°,∴CH=CF=BD,FH=CF=BD,∵在直角三角形中:FE2=FH2+EH2,∴DE2=(BD+EC)2+(BD)2模型6.全等三角形模型之90°-90°對角互補型1)“共斜邊等腰直角三角形+直角三角形”模型(異側型)條件:如圖,已知∠AOB=∠DCE=90°,OC平分∠AOB.結論:①CD=CE,②OD+OE=OC,③.證明:過點C作CM⊥OD,CN⊥OB,∴∠CMD=∠CNE=90°,∵OC平分∠AOB,∴CM=CN,又∵∠AOB=∠DCE=90°,∴∠MCN=90°,∴∠MCD=∠NCE,∴△MCD≌△NCE;∴CD=CE,根據上述條件易證:四邊形ONCM為正方形,∴∠CON=45°,OM=ON,又∵OD+OE=OM-DM+ON+NE,∴OD+OE=OM+ON=2ON=OC,∵△MCD≌△NCE,∴S△MCD=S△NCE,∴2)“斜邊等腰直角三角形+直角三角形”模型(同側型)條件:如圖,已知∠DCE的一邊與AO的延長線交于點D,∠AOB=∠DCE=90°,OC平分∠AOB.結論:①CD=CE,②OE-OD=OC,③.證明:過點C作CM⊥OD,CN⊥OB,∴∠CMD=∠CNE=90°,∵OC平分∠AOB,∴CM=CN,又∵∠AOB=∠DCE=90°,∴∠MCN=90°,∴∠MCD=∠NCE,∴△MCD≌△NCE;∴CD=CE,MD=NE,根據上述條件易證:四邊形ONCM為正方形,∴∠CON=45°,OM=ON,又∵OE-OD=ON+NE-(DM-OM),∴OE-OD=ON+OM=2ON=OC,∵△MCD≌△NCE,∴S△MCD=S△NCE,.模型7.全等三角形模型之60°-120°對角互補型1)“等邊三角形對120°模型”(1)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB.結論:①CD=CE,②OD+OE=OC,③.證明:過點C作CM⊥OD,CN⊥OB,∴∠CMD=∠CNE=90°,∵OC平分∠AOB,∴CM=CN,又∵∠AOB=2∠DCE=120°,∴∠AOB+∠DCE=180°,∴∠CDO+∠CEO=180°,∵∠CDO+∠CDM=180°,∴∠MDC=∠CEO,∴△MCD≌△NCE;∴CD=CE,MD=NE,∵OC平分∠AOB,∴∠CON=∠COM=60°,∴ON=OM=OC,NC=MC=OC。又∵OE+OD=ON+NE+OM-DM,∴OE+OD=ON+OM=OC,∵△MCD≌△NCE,∴S△MCD=S△NCE,∴。2)“等邊三角形對120°模型”(2)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB,∠DCE的一邊與BO的延長線交于點D,結論:①CD=CE,②OD-OE=OC,③.證明:過點C作CM⊥OD,CN⊥OB,∴∠CMD=∠CNE=90°,∵OC平分∠AOB,∴CM=CN,又∵∠AOB=2∠DCE=120°,∴∠AOB+∠DCE=180°,∠AOB+∠MCN=180°,∴∠DCE=∠MCN=60°∴∠DCE-∠MCE=∠MCN-∠MCE,∴∠MCD=∠NCE,∴△MCD≌△NCE;∴CD=CE,MD=NE,∵OC平分∠AOB,∴∠CON=∠COM=60°,∴ON=OM=OC,NC=MC=OC。又∵OD-OE=OM+DM-(NE-ON),∴OD-OE=ON+OM=OC,∵△MCD≌△NCE,∴S△MCD=S△NCE,∴。模型8.全等三角形模型α—180°-α對角互補型1)“α對180°-α模型”條件:四邊形ABCD中,AP=BP,∠A+∠B=180°。結論:OP平分∠AOB。證明:過點P作PE⊥OA,PF⊥OB,∴∠AEP=∠BFP=90°,∵∠A+∠B=180°,∠OAP+∠PAE=180°,∴∠EAP=∠B。∵AP=BP,∴△PAE≌△PBF,∴PE=PF,∴OP平分∠AOB。注意:如下圖:①AP=BP,②∠A+∠B=180°,③OP平分∠AOB,以上三個條件可知二推一。模型9.全等三角形模型之正方形中的十字架型條件:1)如圖1,在正方形ABCD中,若E、F分別是BC、CD上的點,AE⊥BF;結論:AE=BF。證明:四邊形是正方形,,,∴AE⊥BF,∴,,,∴AE=BF。條件:2)如圖2,在正方形ABCD中,若E、F、G分別是BC、CD、AB上的點,AE⊥GF;結論:AE=GF。證明:在FC上取一點P,使得GB=PF,連結BP。四邊形是正方形,∴AB//CD,∴四邊形是平行四邊形,∴GF//BP,GF=BP,同1)中證明,可得AE=GF。條件:3)如圖3,正方形ABCD中,若E、F、G、H分別是BC、CD、AB、AD上的點,EH⊥GF;結論:HE=GF。證明:在FC、BE上取一點P、Q,使得GB=PF,AH=QE,連結BP、AQ。四邊形是正方形,∴AB//CD,∴四邊形是平行四邊形,∴GF//BP,GF=BP,同理可證得:四邊形是平行四邊形,∴AQ//HF,AQ=HF,同1)中證明,可得HE=GF。知識三相似三角形模型模型1.相似三角形模型之“A”字模型“A”字模型圖形(通常只有一個公共頂點)的兩個三角形有一個“公共角”(是對應角),再有一個角相等或夾這個公共角的兩邊對應成比例,就可以判定這兩個三角形相似。①“A”字模型②反“A”字模型③同向雙“A”字模型④內接矩形模型圖1圖2圖3圖4①“A”字模型條件:如圖1,DE∥BC;結論:△ADE∽△ABC?eq\f(AD,AB)=eq\f(AE,AC)=eq\f(DE,BC)。證明:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴eq\f(AD,AB)=eq\f(AE,AC)=eq\f(DE,BC)。②反“A”字模型條件:如圖2,∠AED=∠B;結論:△ADE∽△ACB?eq\f(AD,AC)=eq\f(AE,AB)=eq\f(DE,BC)。證明:∵∠AED=∠B,∴∠A=∠A,(公共角)∴△ADE∽△ACB,∴eq\f(AD,AC)=eq\f(AE,AB)=eq\f(DE,BC)。③同向雙“A”字模型條件:如圖3,EF∥BC;結論:△AEF∽△ABC,△AEG∽△ABD,△AGF∽△ADC?。證明:∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴△AEF∽△ABC,同理可證:△AEG∽△ABD,△AGF∽△ADC,∴eq\f(AD,AB)=eq\f(AE,AC)=eq\f(DE,BC)。④內接矩形模型條件:如圖4,△ABC的內接矩形DEFG的邊EF在BC邊上,D、G分別在AB、AC邊上,且AM⊥BC;結論:△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM?。證明:∵DEFG是矩形∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,同理可證:△ADN∽△ABM,△AGN∽△ACM,∴。模型2.相似三角形模型之“X”字模型(“8”字模型)“8”字模型圖形的兩個三角形有“對頂角”,再有一個角相等或夾對頂角的兩邊對應成比例就可以判定這兩個三角形相似.①“8”字模型②反“8”字模型③平行雙“8”字模型④斜雙“8”字模型圖1圖2圖3圖4①“8”字模型條件:如圖1,AB∥CD;結論:△AOB∽△COD?eq\f(AB,CD)=eq\f(OA,OC)=eq\f(OB,OD)。證明:∵AB∥CD,∴∠A=∠C,∠B=∠D,∴△AOB∽△COD,∴eq\f(AB,CD)=eq\f(OA,OC)=eq\f(OB,OD)。②反“8”字模型條件:如圖2,∠A=∠D;結論:△AOB∽△DOC?eq\f(AB,CD)=eq\f(OA,OD)=eq\f(OB,OC)。證明:∵∠A=∠D,∴∠AOB=∠DOC,(對頂角)∴△AOB∽△DOC,∴eq\f(AB,CD)=eq\f(OA,OD)=eq\f(OB,OC)。③平行雙“8”字模型條件:如圖3,AB∥CD;結論:。證明:∵AB∥CD,∴∠A=∠D,∠AEO=∠DFO,∴△AEO∽△DFO,同理可證:△BEO∽△CFO,△ABO∽△DCO,∴。④斜雙“8”字模型條件:如圖4,∠1=∠2;結論:△AOD∽△BOC,△AOB∽△DOC?∠3=∠4。證明:∵∠1=∠2,∠AOD=∠BOC(對頂角),∴△AOD∽△BOC,∴AO:BO=DO:CO,即AO:DO=BO:CO;∵∠AOB=∠DOC(對頂角),∴△AOB∽△DOC,∴∠3=∠4。模型3.相似三角形模型之“AX”字模型(“A8”字模型)①一“A”+“8”模型②兩“A”+“8”模型(反向雙“A”字模型)③四“A”+“8”模型圖1圖2圖3①一“A”+“8”模型條件:如圖1,DE∥BC;結論:△ADE∽△ABC,△DEF∽△CBF,?。證明:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴eq\f(AD,AB)=eq\f(AE,AC)=eq\f(DE,BC)。∵DE∥BC,∴∠FDE=∠FCB,∠DEF=∠CBF,∴△DEF∽△CBF,∴。∴。②兩“A”+“8”模型條件:如圖2,DE∥AF∥BC;結論:△DAF∽△DBC,△CAF∽△CED,?。證明:∵AF∥BC,∴∠DAF=∠B,∠DFA=∠DCB,∴△DAF∽△DBC,∴。∵DE∥AF,∴∠CAF=∠E,∠CFA=∠CDE,∴△CAF∽△CED,∴。兩式相加得到:,即,故。③四“A”+“8”模型3條件:如圖3,DE∥GF∥BC;結論:AF=AG,。證明:同②中的證法,易證:,,∴,即AF=AG,故。模型4.相似三角形模型之“母子型”模型(共邊共角模型)“母子”模型的圖形(通常有一個公共頂點和另外一個不是公共的頂點,由于小三角形寓于大三角形中,恰似子依母懷),也是有一個“公共角”,再有一個角相等或夾這個公共角的兩邊對應成比例就可以判定這兩個三角形相似。圖1圖2圖3圖41)“母子”模型(斜射影模型)條件:如圖1,∠C=∠ABD;結論:△ABD∽△ACB,AB2=AD·AC.證明:∵∠C=∠ABD,∠DAB=∠BAC,∴△ADB∽△BAC,∴,∴AB2=AD·AC.2)雙垂直模型(射影模型)條件:如圖2,∠ACB=90o,CD⊥AB;結論:△ACD∽△ABC∽△CBD;CA2=AD·AB,BC2=BD·BA,CD2=DA·DB.證明:∵∠ACB=90o,CD⊥AB,∴∠A+∠ACD=90°,∠A+∠B=90°,∴∠B=∠ACD,∵∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AD·AB.同理可證:BC2=BD·BA,CD2=DA·DB.3)“母子”模型(變形)條件:如圖3,∠D=∠CAE,AB=AC;結論:△ABD∽△ECA;證明:∵AB=AC,∴∠ABC=∠ACB,∴∠DBA=∠ACE,∵∠D=∠CAE,∴△ABD∽△ECA4)共邊模型條件:如圖1,在四邊形中,對角線平分,,結論:;證明:∵對角線平分,∴∠ABD=∠CBC,∵,∴△ADB∽△DCB,∴,∴模型5.相似三角形模型之一線三等角模型1)一線三等角模型(同側型)(銳角型)(直角型)(鈍角型)條件:如圖,∠1=∠2=∠3,結論:△ACE∽△BED。證明:∵∠1+∠C=∠2+∠DEB(外角定理),∠1=∠2∴∠C=∠DEB,∵∠1=∠3,∴△ACE∽△BED。2)一線三等角模型(異側型)條件:如圖,∠1=∠2=∠3,結論:△ADE∽△BEC.證明:∵∠1=∠2,∴∠CBE=∠EAD(等角的補角相等),∴∠C=∠DEB,∵∠1=∠3,∴△ACE∽△BED。∵∠2=∠C+∠CEB(外角定理),∠3=∠DEA+∠CEB,∠2=∠3∴∠C=∠DEA,∴△ADE∽△BEC.3)一線三等角模型(變異型)圖1圖2圖3①特殊中點型:條件:如圖1,若C為AB的中點,且∠1=∠2=∠3,結論:△ACE∽△BED∽△ECD.證明:∵∠1+∠C=∠2+∠DEB(外角定理),∠1=∠2,∴∠C=∠DEB,∵∠1=∠3,∴△ACE∽△BED。∴,∵C為AB的中點,∴AE=EB,∴,∴,∵∠2=∠3,∴△BED∽△ECD②一線三直角變異型1:條件:如圖2,∠ABD=∠AFE=∠BDE=90°.結論:△ABC∽△BDE∽△BFC∽△AFB.證明:∵∠ABD=∠AFE=90°,∴∠ABF+∠CBF=90°,∠A+∠ABF=90°,∴∠CBF=∠A,∵∠ABD=∠BDE=90°,∴△ABC∽△BDE,∵∠ABD=∠AFE=90°,∴∠ABC=∠BFC=90°,∴△ABC∽△BFC,同理可證:△ABC∽△AFB°,故△ABC∽△BDE∽△BFC∽△AFB.③一線三直角變異型2:條件:如圖3,∠ABD=∠ACE=∠BDE=90°.結論:△ABM∽△NDE∽△NCM.證明:∵∠ABD=∠ACE=90°,∴∠ABM=∠MCN=90°,∵∠AMB=∠NMC(對頂角相等)∴△ABM∽△NCM.同理可證:△NDE∽△NCM故:△ABM∽△NDE∽△NCM.模型6.相似三角形模型之手拉手模型“手拉手”旋轉型定義:如果將一個三角形繞著它的項點旋轉并放大或縮小(這個頂點不變),我們稱這樣的圖形變換為旋轉相似變換,這個頂點稱為旋轉相似中心,所得的三角形稱為原三角形的旋轉相似三角形。手拉手模型有以下特點:1)兩個三角形相似;2)這兩個三角形有公共頂點,且繞頂點旋轉并縮放后2個三角形可以重合;3)圖形是任意三角形(只要這兩個三角形是相似的)。1)手拉手相似模型(任意三角形)條件:如圖,∠BAC=∠DAE=,;結論:△ADE∽△ABC,△ABD∽△ACE;;∠BFC=∠BAC.證明:∵,∴,∵∠BAC=∠DAE=,∴△ADE∽△ABC,∵∠BAC=∠DAE=,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,∵,∴△ABD∽△ACE,∴,∠ABD=∠ACE,∴∠BFC=∠BAC=∠DAE=,2)手拉手相似模型(直角三角形)條件:如圖,,;結論:△AOC∽△BOD;,AC⊥BD,.證明:∵,∴∠AOB-∠BOC=∠COD-∠BOC,∴∠AOC=∠BOD,∵,∴△AOC∽△BOD,∴,∠OAB=∠OBD,∴∠AEB=∠AOB=90°,∴AC⊥BD,∴.模型7.相似三角形模型之半角模型1)半角模型(正方形(或等腰直角三角形)中的半角相似模型)條件:已知,如圖,在正方形ABCD中,∠EAF的兩邊分別交BC、CD邊于M、N兩點,且∠EAF=45°結論:如圖1,△MDA∽△MAN∽△ABN;圖1圖2證明:∵ABCD是正方形,∴∠ADM=45°,∵∠EAF=45°,∴∠ADM=∠EAF,∵∠AMD=∠NMA,∴△MDA∽△MAN,同理:△MAN∽△ABN,∴△MDA∽△MAN∽△ABN;結論:如圖2,△BME∽△AMN∽△DFN.證明:∵ABCD是正方形,∴∠NDF=45°,∵∠EAF=45°,∴∠NDF=∠EAF,∵∠DNF=∠ANM,∴△AMN∽△DFN,同理:△BME∽△AMN,∴△BME∽△AMN∽△DFN;結論:如圖3,連接AC,則△AMB∽△AFC,△AND∽△AEC.且;圖3圖4證明:∵ABCD是正方形,∴∠BAC=∠ABC=∠ACF=45°,,∴∠BAM+∠MAC=45°,∵∠EAF=45°,∴∠FAC+∠MAC=45°,∴∠BAM=∠FAC,∴△AMB∽△AFC,∴。同理:△AND∽△AEC,;即。結論:如圖4,△AMN∽△AFE且.證明:∵ABCD是正方形,∴AB∥CD,∴∠DFA=∠BAN;∵∠AFE=∠AFD,∠BAN=∠AMD,∴∠AFE=∠AMN;又∠MAN=∠FAE,∴△AMN∽△AFE,由圖3證明知:,∴。2)半角模型(含120-60°半角模
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國電子雨刮器行業市場競爭現狀及發展趨向研判報告
- 軌道交通智能制造研究-洞察闡釋
- 菜單設計與消費者食物浪費行為的動態優化路徑研究-洞察闡釋
- 農民專業合作社供應鏈管理與農業產出彈性研究-洞察闡釋
- 腹直肌損傷的力-功能-再生交叉研究-洞察闡釋
- 塑料家具市場細分策略-洞察闡釋
- 腦筋急轉思維題目及答案
- 新疆農業職業技術學院《SPSS應用技術》2023-2024學年第二學期期末試卷
- 臨沂大學《生物分析》2023-2024學年第二學期期末試卷
- 哈爾濱音樂學院《公共衛生與預防醫學導論》2023-2024學年第二學期期末試卷
- 替普瑞酮聯合硫糖鋁治療慢性非萎縮性胃炎伴糜爛的療效及安全性分析
- 《霸王茶姬》認證考核試題附答案
- 集裝箱冷板式液冷數據中心技術規范
- GB/T 7106-2019建筑外門窗氣密、水密、抗風壓性能檢測方法
- GB/T 28046.4-2011道路車輛電氣及電子設備的環境條件和試驗第4部分:氣候負荷
- (精心整理)考試作文格紙
- 倉庫管理員培訓教材課件
- (新版)供電可靠性理論考試題庫大全-上(單選、多選題)
- AS9100D體系標準中文版
- 《中國腦卒中護理指導規范(2021年版)》課件
- 學前教育學備課課件(共54張PPT)
評論
0/150
提交評論