




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴陽市重點中學中考數學最后沖刺濃縮精華卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.2.不等式組的解集在數軸上表示正確的是()A. B.C. D.3.如圖,AB是的直徑,點C,D在上,若,則的度數為A. B. C. D.4.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④5.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.6.計算的結果是()A.1 B.-1 C. D.7.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.38.已知二次函數的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結論:①;②;③;④.其中正確結論的個數是()個.A.4個 B.3個 C.2個 D.1個9.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°10.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=0二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A,B在反比例函數y=(x>0)的圖象上,點C,D在反比例函數y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.12.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.13.如圖,已知直線與軸、軸相交于、兩點,與的圖象相交于、兩點,連接、.給出下列結論:①;②;③;④不等式的解集是或.其中正確結論的序號是__________.14.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=20°,則∠OCD=.15.如圖,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以點A為圓心,AC為半徑的弧交AB于點E,以點B為圓心,BC為半徑的弧交AB于點D,則圖中陰影部分圖形的面積為__(保留根號和π)16.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.18.(8分)隨著中國傳統節日“端午節”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙兩種品牌粽子每盒分別為多少元?陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節省了多少錢?19.(8分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數,方程①的根為非負數.(1)求m的取值范圍;(2)若方程②有兩個整數根x1、x2,且m為整數,求方程②的整數根.20.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.21.(8分)如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉90°的△A2OB2,并求出線段OB掃過的面積.22.(10分)(1)問題發現:如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.23.(12分)已知拋物線y=﹣x2﹣4x+c經過點A(2,0).(1)求拋物線的解析式和頂點坐標;(2)若點B(m,n)是拋物線上的一動點,點B關于原點的對稱點為C.①若B、C都在拋物線上,求m的值;②若點C在第四象限,當AC2的值最小時,求m的值.24.高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;
B、不是軸對稱圖形,是中心對稱圖形,不符合題意;
C、不是軸對稱圖形,是中心對稱圖形,不符合題意;
D、是軸對稱圖形,符合題意.
故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉180度后與原圖重合.2、C【解析】
分別求出每一個不等式的解集,根據口訣:大小小大中間找確定不等式組的解集,在數軸上表示時由包括該數用實心點、不包括該數用空心點判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.3、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.4、A【解析】
由平面圖形的折疊及正方體的表面展開圖的特點解題.【詳解】將圖1的正方形放在圖2中的①的位置出現重疊的面,所以不能圍成正方體,故選A.【點睛】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.5、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.6、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.7、C【解析】
根據積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【點睛】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.8、B【解析】分析:根據已知畫出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據二次函數y=ax2+bx+c的圖象與x軸交于點(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,畫出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點,∴②錯誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個x1,?2?x1<?2,∴由一元二次方程根與系數的關系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項正確.故選B.點睛:屬于二次函數綜合題,考查二次函數圖象與系數的關系,二次函數圖象上點的坐標特征,拋物線與軸的交點,屬于常考題型.9、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.10、D【解析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數冪的除法;2.合并同類項;3.同底數冪的乘法;4.冪的乘方與積的乘方.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數的性質,k的幾何意義.能夠將三角形面積進行合理的轉換是解題的關鍵.12、或【解析】
由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.13、②③④【解析】分析:根據一次函數和反比例函數的性質得到k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根據三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點睛:本題考查了反比例函數與一次函數的交點,求兩直線的交點坐標,三角形面積的計算,正確的理解題意是解題的關鍵.14、65°【解析】
解:由題意分析之,得出弧BD對應的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質要熟練把握15、15π?18.【解析】
根據扇形的面積公式:S=分別計算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面積,最后由S陰影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【詳解】S陰影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S陰影部分=12π+3π?18=15π?18.故答案為15π?18.【點睛】本題考查了扇形面積的計算,解題的關鍵是熟練的掌握扇形的面積公式.16、4.【解析】
過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當AD⊥BC時,AD最短,依據BC=7,△ABC的面積為14,即可得到當AD⊥BC時,AD=4=AE=AF,進而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當AD⊥BC時,AD最短,
∵BC=7,△ABC的面積為14,
∴當AD⊥BC時,,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【點睛】本題主要考查了折疊問題,解題的關鍵是利用對應邊和對應角相等.三、解答題(共8題,共72分)17、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.18、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后購買這批粽子比不打折節省了3120元.【解析】分析:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)根據節省錢數=原價購買所需錢數-打折后購買所需錢數,即可求出節省的錢數.詳解:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據題意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后購買這批粽子比不打折節省了3640元.點睛:本題考查了二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據數量關系,列式計算.19、(1)且,;(2)當m=1時,方程的整數根為0和3.【解析】
(1)先解出分式方程①的解,根據分式的意義和方程①的根為非負數得出的取值;
(2)根據根與系數的關系得到x1+x2=3,,根據方程的兩個根都是整數可得m=1或.結合(1)的結論可知m1.解方程即可.【詳解】解:(1)∵關于x的分式方程的根為非負數,∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數根x1、x2,m為整數,∴x1+x2=3,,∴為整數,∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數根為0和3.【點睛】考查了解分式方程,一元二次方程根與系數的關系,解一元二次方程等,熟練掌握方程的解法是解題的關鍵.20、【思考】h1+h1=h;【探究】h1-h1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解析】
思考:根據等腰三角形的性質,把代數式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【詳解】思考即h1+h1=h.探究h1-h1=h.理由.連接,∵∴∴h1-h1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【點睛】本題結合三角形的面積和等腰三角形的性質考查了新性質的推理與證明,熟練掌握三角形的性質,結合圖形層層推進是解答的關鍵.21、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】
(1)根據軸對稱性質解答點關于x軸對稱橫坐標不變,縱坐標互為相反數;(2)根據旋轉變換的性質、扇形面積公式計算.【詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點O順時針旋轉90°的△A2OB2如圖所示:線段OB掃過的面積為:【點睛】此題主要考查了圖形的旋轉以及位似變換和軸對稱變換等知識,根據題意得出對應點坐標位置是解題關鍵.22、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據相似三角形的性質即可得到結論;
(3)如圖3,連接AB,AN,根據正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據相似三角形的性質得出,得到BM=2,CM=8,再根據勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.23、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點坐標為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據拋物線的解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化旅游產業園區廠房轉租及旅游產品開發合同
- 成都學校教室裝修與教學設施合同
- 搬運工技能培訓與就業保障合同
- 茶葉茶具產業園區投資與購銷合同
- 國際化貨物交易信用證開證及管理服務合同
- 鋼化玻璃定制采購及安全安裝施工合同
- 朝鮮鈦礦資源投資與收益分配合同
- 餐飲綜合體場地租賃及物業管理合同
- 餐飲行業財務管理與成本控制合同
- 礦產企業財務代理與礦產資源合同
- 2025年發展對象考試題庫及答案(完整版)
- AI技術的軍事應用與挑戰分析報告
- 小升初銜接課程設置及措施
- 醫院醫療服務收費自查自糾制度
- 電氣二次專業防非停技術措施
- 2025年國企考試筆試試題及答案
- 《反傾銷反補貼》課件 - 應對國際貿易中的不公平競爭策略
- 煉鋼生產工藝流程
- 2024年6月浙江省普通高校招生選考高考信息技術真題及答案
- 2024年度海南省國家電網招聘之電網計算機題庫練習試卷B卷附答案
- 2025年鄉文化站半年工作總結樣本(2篇)
評論
0/150
提交評論