




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省襄陽市棗陽實驗中學中考數學全真模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.式子在實數范圍內有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣22.實數a、b在數軸上的對應點的位置如圖所示,則正確的結論是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<03.已知一組數據1、2、3、x、5,它們的平均數是3,則這一組數據的方差為()A.1 B.2 C.3 D.44.據史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m5.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.6.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數是()A.30° B.15° C.18° D.20°7.若等式(-5)□5=–1成立,則□內的運算符號為()A.+ B.– C.× D.÷8.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.439.某同學將自己7次體育測試成績(單位:分)繪制成折線統計圖,則該同學7次測試成績的眾數和中位數分別是()A.50和48 B.50和47 C.48和48 D.48和4310.老師在微信群發了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=.12.一組數:2,1,3,,7,,23,…,滿足“從第三個數起,前兩個數依次為、,緊隨其后的數就是”,例如這組數中的第三個數“3”是由“”得到的,那么這組數中表示的數為______.13.要使式子有意義,則的取值范圍是__________.14.《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設有x匹大馬,y匹小馬,根據題意可列方程組為______.15.計算的結果是_____16.如圖所示,一動點從半徑為2的⊙O上的A0點出發,沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發,沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;A4A0間的距離是_____;…按此規律運動到點A2019處,則點A2019與點A0間的距離是_____.三、解答題(共8題,共72分)17.(8分)我們常用的數是十進制數,如,數要用10個數碼(又叫數字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數碼:0和1,如二進制中等于十進制的數6,等于十進制的數53.那么二進制中的數101011等于十進制中的哪個數?18.(8分)如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.19.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數.(2)求圖中陰影部分的面積.20.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.21.(8分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.22.(10分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.23.(12分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數;若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.24.“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,
故選:B.【點睛】此題主要考查了二次根式有意義的條件,關鍵是掌握二次根式中的被開方數是非負數.2、C【解析】
直接利用a,b在數軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數軸和有理數的四則運算,解題的關鍵是掌握利用數軸表示有理數的大小.3、B【解析】
先由平均數是3可得x的值,再結合方差公式計算.【詳解】∵數據1、2、3、x、5的平均數是3,∴=3,解得:x=4,則數據為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術平均數和方差,解題的關鍵是熟練掌握平均數和方差的定義.4、C【解析】連結OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.5、B【解析】
過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.6、C【解析】
∠1的度數是正五邊形的內角與正方形的內角的度數的差,根據多邊形的內角和定理求得角的度數,進而求解.【詳解】∵正五邊形的內角的度數是×(5-2)×180°=108°,正方形的內角是90°,
∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內角和定理、正五邊形和正方形的性質,求得正五邊形的內角的度數是關鍵.7、D【解析】
根據有理數的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內的運算符號為÷,故選D.【點睛】考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.8、D【解析】
如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質,勾股定理,正確的作出輔助線是解題的關鍵.9、A【解析】
由折線統計圖,可得該同學7次體育測試成績,進而求出眾數和中位數即可.【詳解】由折線統計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數為50,中位數為48,故選:A.【點睛】本題考查了眾數和中位數,解題的關鍵是利用折線統計圖獲取有效的信息.10、B【解析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
M、N兩點關于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數的定義.12、-9.【解析】
根據題中給出的運算法則按照順序求解即可.【詳解】解:根據題意,得:,.故答案為:-9.【點睛】本題考查了有理數的運算,理解題意、弄清題目給出的運算法則是正確解題的關鍵.13、【解析】
根據二次根式被開方數必須是非負數的條件可得關于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.14、【解析】分析:根據題意可以列出相應的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.15、【解析】【分析】根據二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.16、1.【解析】
據題意求得A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019與A3重合,即可得到結論.【詳解】解:如圖,∵⊙O的半徑=1,由題意得,A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此規律A1019與A3重合,∴A0A1019=A0A3=1,故答案為,1.【點睛】本題考查了圖形的變化類,等邊三角形的性質,解直角三角形,正確的作出圖形是解題的關鍵.三、解答題(共8題,共72分)17、1.【解析】分析:利用新定義得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根據乘方的定義進行計算.詳解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二進制中的數101011等于十進制中的1.點睛:本題考查了有理數的乘方:有理數乘方的定義:求n個相同因數積的運算,叫做乘方.18、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標為或或或.【解析】分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關系式,再根據拋物線的對稱軸方程可得a和b的關系,再聯立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設直線BC與對稱軸x=-1的交點為M,此時MA+MC的值最小.把x=-1代入直線y=x+3得y的值,即可求出點M坐標;(3)設P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對稱軸為,且拋物線經過,∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對稱軸的交點為,則此時的值最小,把代入直線得,∴.即當點到點的距離與到點的距離之和最小時的坐標為.(注:本題只求坐標沒說要求證明為何此時的值最小,所以答案未證明的值最小的原因).(3)設,又,,∴,,,①若點為直角頂點,則,即:解得:,②若點為直角頂點,則,即:解得:,③若點為直角頂點,則,即:解得:,.綜上所述的坐標為或或或.點睛:本題綜合考查了二次函數的圖象與性質、待定系數法求函數(二次函數和一次函數)的解析式、利用軸對稱性質確定線段的最小長度、難度不是很大,是一道不錯的中考壓軸題.19、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質,解題的關鍵是熟練的掌握扇形面積的計算及切線的性質.20、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數解析式;(2)、本題利用假設法來進行證明,假設存在這樣的點,然后設出點F的坐標求出FH和FG的長度,然后得出面積與t的函數關系式,根據方程無解得出結論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設存在滿足條件的點F,如圖所示,連結BF、CF、OF,過點F作FH⊥x軸于點H,FG⊥y軸于點G.設點F的坐標為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數的應用21、(1)證明見解析;(2)AD=2.【解析】
(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 仙桃長春活動策劃方案
- 代幣融資活動方案
- 代表小組調研活動方案
- 代購充值活動方案
- 儀器公司團建活動方案
- 企業書法培訓活動方案
- TJSQA-溫室氣體?產品碳足跡量化方法與要求?砌體材料產品
- 企業專家活動策劃方案
- 企業體驗活動方案
- 企業公司安全月活動方案
- GB/T 730-2008紡織品色牢度試驗藍色羊毛標樣(1~7)級的品質控制
- GB/T 3672.1-2002橡膠制品的公差第1部分:尺寸公差
- 半條被子(紅軍長征時期故事) PPT
- 加入民盟的申請書完整版
- 商業秘密保護課件
- 電梯安裝標準合同模板
- 《交流電氣化鐵道牽引供電系統》教學課件合集
- 松下NPM貼片機基本操作培訓教程課件
- 中國哲學史考研筆記
- 掘進機整機出廠檢驗報告
- 《群落生態學》PPT課件(完整版)
評論
0/150
提交評論