




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省鄂州鄂城區七校聯考中考數學最后沖刺模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數是160B.乙組同學身高的中位數是161C.甲組同學身高的平均數是161D.兩組相比,乙組同學身高的方差大2.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.3.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+14.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.15.第四屆濟南國際旅游節期間,全市共接待游客686000人次.將686000用科學記數法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1056.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個7.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π8.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)9.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.10.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現故障后停車維修,修好后以2a千米/時的速度繼續行駛;乙車在甲車出發2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數為()A.0個 B.1個 C.2個 D.3個11.某小組在“用頻率估計概率”的試驗中,統計了某種結果出現的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數是612.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:x2y﹣4xy+4y=_____.14.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.15.不等式>4﹣x的解集為_____.16.三人中有兩人性別相同的概率是_____________.17.寫出一個比大且比小的有理數:______.18.分解因式:_______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區,在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區,為什么?(參考數據:≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?20.(6分)某數學興趣小組為測量如圖(①所示的一段古城墻的高度,設計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發經過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.21.(6分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.22.(8分)如圖,沿AC方向開山修路.為了加快施工進度,要在小山的另一邊同時施工,從AC上的一點B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點E離D多遠正好使A,C,E三點在一直線上(取1.732,結果取整數)?23.(8分)如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.24.(10分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.25.(10分)某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?26.(12分)計算:(-1)-1-++|1-3|27.(12分)我校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據抽查結果繪制的統計圖的一部分.組別正確數字x人數A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根據以上信息解決下列問題:(1)在統計表中,m=,n=,并補全條形統計圖.(2)扇形統計圖中“C組”所對應的圓心角的度數是.(3)有三位評委老師,每位老師在E組學生完成學校比賽后,出示“通過”或“淘汰”或“待定”的評定結果.學校規定:每位學生至少獲得兩位評委老師的“通過”才能代表學校參加鄂州市“漢字聽寫”比賽,請用樹形圖求出E組學生王云參加鄂州市“漢字聽寫”比賽的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據眾數、中位數和平均數及方差的定義逐一判斷可得.【詳解】A.甲組同學身高的眾數是160,此選項正確;B.乙組同學身高的中位數是161,此選項正確;C.甲組同學身高的平均數是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數、中位數和平均數及方差,掌握眾數、中位數和平均數及方差的定義和計算公式是解題的關鍵.2、C【解析】
連接D為弧AB的中點,根據弧,弦的關系可知,AD=BD,根據圓周角定理可得:在BC上截取,連接DF,則≌,根據全等三角形的性質可得:即根據等腰三角形的性質可得:設則即可求出的值.【詳解】如圖:連接D為弧AB的中點,根據弧,弦的關系可知,AD=BD,根據圓周角定理可得:在BC上截取,連接DF,則≌,即根據等腰三角形的性質可得:設則故選C.【點睛】考查弧,弦之間的關系,全等三角形的判定與性質,等腰三角形的性質,銳角三角函數等,綜合性比較強,關鍵是構造全等三角形.3、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.4、C【解析】
延長BC′交AB′于D,根據等邊三角形的性質可得BD⊥AB′,利用勾股定理列式求出AB,然后根據等邊三角形的性質和等腰直角三角形的性質求出BD、C′D,然后根據BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.5、D【解析】根據科學記數法的表示形式(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數)可得:686000=6.86×105,
故選:D.6、B【解析】
仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,
∴k<0正確;
②∵y2=x+a,與y軸的交點在負半軸上,
∴a<0,故②錯誤;
③當x<3時,y1>y2錯誤;
故正確的判斷是①.
故選B.【點睛】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.7、C【解析】
根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.8、B【解析】分析:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規律,進而可得答案.詳解:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據條件求出前邊幾個點的坐標,得到規律是解題關鍵.9、A【解析】
首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.10、A【解析】解:①由函數圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.11、D【解析】
根據統計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據圖中信息,某種結果出現的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.熟練掌握概率公式是解題關鍵.12、D【解析】
過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y(x-2)2【解析】
先提取公因式y,再根據完全平方公式分解即可得.【詳解】原式==,故答案為.14、-4<x<1【解析】將P(1,1)代入解析式y1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.15、x>1.【解析】
按照去分母、去括號、移項、合并同類項、系數化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.16、1【解析】分析:由題意和生活實際可知:“三個人中,至少有兩個人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個人的性別是相同的,∴P(三人中有二人性別相同)=1.點睛:列出本題中所有的等可能結果是解題的關鍵.17、2【解析】
直接利用接近和的數據得出符合題意的答案.【詳解】解:到之間可以為:2(答案不唯一),故答案為:2(答案不唯一).【點睛】此題考查無理數的估算,解題的關鍵在于利用題中所給有理數的大小求符合題意的答案.18、【解析】=2()=.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)不會穿過森林保護區.理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區,也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區.(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.20、(1)8m;(2)答案不唯一【解析】
(1)根據入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據相似三角形的性質列出比例式,即可求出CD的長.(2)設計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點D作DCAB于點C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點睛】本題考查相似三角形性質的應用.解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立適當的數學模型來解決問題.21、(1)①;②n≤1;(2)ac≤1,見解析.【解析】
(1)①△=1求解b=1,將點(3,1)代入平移后解析式,即可;②頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯立方程組即可求n的范圍;(2)將點(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),∴關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【點睛】本題考查二次函數的圖象及性質;掌握二次函數圖象平移時改變位置,而a的值不變是解題的關鍵.22、450m.【解析】
若要使A、C、E三點共線,則三角形BDE是以∠E為直角的三角形,利用三角函數即可解得DE的長.【詳解】解:,,,在中,,,,.答:另一邊開挖點離,正好使,,三點在一直線上.【點睛】本題考查的知識點是解直角三角形的應用和勾股定理的運用,解題關鍵是是熟記含30°的直角三角形的性質.23、(1)反比例函數的表達式y=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數y=,
得k=3,
∴反比例函數的表達式y=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數與反比例函數的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數法求出函數圖象的解析式,再通過函數解析式反過來求坐標,為接下來求面積做好鋪墊.24、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】
(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年K2教育中STEM課程實施與效果評估:創新教育模式
- 結腸造瘺術后并發癥及防治策略2025
- 小升初六年級數學下冊常考易考知識點課件《第六單元第3講:因數與倍數》人教版
- 低空經濟八大應用場景與實踐案例解析方案
- 大數據背景下高職院校電子商務專業課教學創新研究
- 華為體驗店培訓材料:云服務
- 2024年油氣水輸送管材專用料資金籌措計劃書代可行性研究報告
- 山東省菏澤市巨野縣2024-2025學年八年級下學期期中生物試題 (含答案)
- 現場管理試題及答案
- 物理必修一試題及答案
- 法律文書寫作能力測試題庫及解答分析
- 2025合作合同范本:兩人合伙協議書模板
- 外賣騎手勞務合同協議書
- T/CAMIR 002-2022企業技術創新體系建設、管理與服務要求
- DB31/T 595-2021冷庫單位產品能源消耗指標
- 第五章 SPSS基本統計分析課件
- 2025年計算機Photoshop操作實務的試題及答案
- 2025時事熱點政治題及參考答案(滿分必刷)
- GB/T 23453-2025天然石灰石建筑板材
- 2024-2030全球WiFi 6移動熱點行業調研及趨勢分析報告
- 砌磚理論考試題及答案
評論
0/150
提交評論