裂項(xiàng)求和試題及答案_第1頁
裂項(xiàng)求和試題及答案_第2頁
裂項(xiàng)求和試題及答案_第3頁
裂項(xiàng)求和試題及答案_第4頁
裂項(xiàng)求和試題及答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裂項(xiàng)求和試題及答案

一、單項(xiàng)選擇題(每題2分,共10題)1.數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式\(a_n=\frac{1}{n(n+1)}\),裂項(xiàng)后為()A.\(\frac{1}{n}-\frac{1}{n+1}\)B.\(\frac{1}{n+1}-\frac{1}{n}\)C.\(\frac{1}{n}+\frac{1}{n+1}\)D.\(\frac{1}{n-1}-\frac{1}{n}\)2.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{(2n-1)(2n+1)}\)裂項(xiàng)結(jié)果是()A.\(\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})\)B.\(\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n-1})\)C.\(\frac{1}{2n-1}-\frac{1}{2n+1}\)D.\(\frac{1}{2n+1}-\frac{1}{2n-1}\)3.數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_n=\frac{1}{n(n+2)}\),裂項(xiàng)為()A.\(\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})\)B.\(\frac{1}{n}-\frac{1}{n+2}\)C.\(\frac{1}{2}(\frac{1}{n+2}-\frac{1}{n})\)D.\(\frac{1}{n+2}-\frac{1}{n}\)4.已知\(a_n=\frac{1}{n(n+3)}\),則\(a_1\)裂項(xiàng)后是()A.\(\frac{1}{3}(1-\frac{1}{4})\)B.\(\frac{1}{3}(\frac{1}{4}-1)\)C.\(1-\frac{1}{4}\)D.\(\frac{1}{4}-1\)5.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{(n+1)(n+2)}\),裂項(xiàng)為()A.\(\frac{1}{n+1}-\frac{1}{n+2}\)B.\(\frac{1}{n+2}-\frac{1}{n+1}\)C.\(\frac{1}{n}-\frac{1}{n+3}\)D.\(\frac{1}{n+3}-\frac{1}{n}\)6.對(duì)于數(shù)列\(zhòng)(\{a_n\}\),\(a_n=\frac{1}{n(n+4)}\)裂項(xiàng)正確的是()A.\(\frac{1}{4}(\frac{1}{n}-\frac{1}{n+4})\)B.\(\frac{1}{4}(\frac{1}{n+4}-\frac{1}{n})\)C.\(\frac{1}{n}-\frac{1}{n+4}\)D.\(\frac{1}{n+4}-\frac{1}{n}\)7.數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_n=\frac{1}{(3n-2)(3n+1)}\)裂項(xiàng)為()A.\(\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})\)B.\(\frac{1}{3}(\frac{1}{3n+1}-\frac{1}{3n-2})\)C.\(\frac{1}{3n-2}-\frac{1}{3n+1}\)D.\(\frac{1}{3n+1}-\frac{1}{3n-2}\)8.已知\(a_n=\frac{1}{n(n+5)}\),裂項(xiàng)得()A.\(\frac{1}{5}(\frac{1}{n}-\frac{1}{n+5})\)B.\(\frac{1}{5}(\frac{1}{n+5}-\frac{1}{n})\)C.\(\frac{1}{n}-\frac{1}{n+5}\)D.\(\frac{1}{n+5}-\frac{1}{n}\)9.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{(2n+1)(2n+3)}\)裂項(xiàng)后是()A.\(\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})\)B.\(\frac{1}{2}(\frac{1}{2n+3}-\frac{1}{2n+1})\)C.\(\frac{1}{2n+1}-\frac{1}{2n+3}\)D.\(\frac{1}{2n+3}-\frac{1}{2n+1}\)10.若\(a_n=\frac{1}{n(n+6)}\),裂項(xiàng)形式為()A.\(\frac{1}{6}(\frac{1}{n}-\frac{1}{n+6})\)B.\(\frac{1}{6}(\frac{1}{n+6}-\frac{1}{n})\)C.\(\frac{1}{n}-\frac{1}{n+6}\)D.\(\frac{1}{n+6}-\frac{1}{n}\)二、多項(xiàng)選擇題(每題2分,共10題)1.以下哪些數(shù)列通項(xiàng)可以用裂項(xiàng)求和法()A.\(a_n=\frac{1}{n(n+3)}\)B.\(a_n=\frac{1}{(2n-1)(2n+1)}\)C.\(a_n=n^2\)D.\(a_n=\frac{1}{n(n+1)(n+2)}\)2.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{n(n+2)}\),裂項(xiàng)求和時(shí)用到的裂項(xiàng)方法有()A.寫成\(\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})\)B.消去中間項(xiàng)C.求首項(xiàng)D.確定項(xiàng)數(shù)3.對(duì)于裂項(xiàng)求和,以下說法正確的是()A.可以將數(shù)列通項(xiàng)拆分成兩項(xiàng)差的形式B.拆分后的項(xiàng)能前后抵消很多項(xiàng)C.只適用于等差數(shù)列D.能簡化數(shù)列求和運(yùn)算4.數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_n=\frac{1}{(n+1)(n+3)}\),裂項(xiàng)求和過程包含()A.裂項(xiàng)為\(\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})\)B.列出前\(n\)項(xiàng)和表達(dá)式C.計(jì)算首項(xiàng)和末項(xiàng)D.化簡求和結(jié)果5.已知\(a_n=\frac{1}{n(n+4)}\),裂項(xiàng)求和的步驟有()A.裂項(xiàng)成\(\frac{1}{4}(\frac{1}{n}-\frac{1}{n+4})\)B.求\(S_n\)時(shí)確定哪些項(xiàng)保留C.分析項(xiàng)數(shù)D.得出\(S_n\)的最終表達(dá)式6.以下數(shù)列通項(xiàng)裂項(xiàng)正確的有()A.\(a_n=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}\)B.\(a_n=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})\)C.\(a_n=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})\)D.\(a_n=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}\)7.裂項(xiàng)求和時(shí),可能涉及到的運(yùn)算有()A.分式的通分B.項(xiàng)的合并C.確定抵消項(xiàng)D.計(jì)算首末項(xiàng)8.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{(n+2)(n+4)}\),裂項(xiàng)求和正確做法有()A.裂項(xiàng)為\(\frac{1}{2}(\frac{1}{n+2}-\frac{1}{n+4})\)B.計(jì)算\(S_n\)時(shí)分析前后項(xiàng)抵消情況C.寫出\(S_n\)的展開式D.化簡\(S_n\)得到最終結(jié)果9.對(duì)于數(shù)列\(zhòng)(\{a_n\}\),若\(a_n=\frac{1}{n(n+5)}\),裂項(xiàng)求和的要點(diǎn)包括()A.正確裂項(xiàng)為\(\frac{1}{5}(\frac{1}{n}-\frac{1}{n+5})\)B.清楚\(n\)項(xiàng)和中哪些項(xiàng)不能抵消C.求出\(S_n\)D.分析數(shù)列的單調(diào)性10.以下關(guān)于裂項(xiàng)求和與數(shù)列的關(guān)系,正確的是()A.可以解決一些非等差等比數(shù)列的求和問題B.對(duì)通項(xiàng)公式有一定要求C.是一種常見的數(shù)列求和方法D.能直接判斷數(shù)列的通項(xiàng)公式三、判斷題(每題2分,共10題)1.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{n(n+1)}\),裂項(xiàng)后可寫成\(\frac{1}{n}-\frac{1}{n+1}\)。()2.裂項(xiàng)求和只適用于分母為兩項(xiàng)乘積形式的數(shù)列通項(xiàng)。()3.若\(a_n=\frac{1}{(2n-1)(2n+1)}\),裂項(xiàng)為\(\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n-1})\)。()4.數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_n=\frac{1}{n(n+2)}\)裂項(xiàng)求和時(shí),中間項(xiàng)都能消去。()5.裂項(xiàng)求和過程中,不需要考慮項(xiàng)數(shù)。()6.已知\(a_n=\frac{1}{(n+1)(n+3)}\),裂項(xiàng)為\(\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})\)。()7.所有數(shù)列都能用裂項(xiàng)求和法求前\(n\)項(xiàng)和。()8.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{n(n+4)}\)裂項(xiàng)后求\(S_n\),只需保留首項(xiàng)和末項(xiàng)。()9.裂項(xiàng)求和時(shí),拆分后的兩項(xiàng)差形式中,分子一定是1。()10.若\(a_n=\frac{1}{(2n+1)(2n+3)}\),裂項(xiàng)為\(\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})\)。()四、簡答題(每題5分,共4題)1.簡述裂項(xiàng)求和法的基本原理。裂項(xiàng)求和法是將數(shù)列通項(xiàng)拆分成兩項(xiàng)差的形式,在求前\(n\)項(xiàng)和時(shí),中間的很多項(xiàng)可以相互抵消,從而簡化求和過程,求出數(shù)列的前\(n\)項(xiàng)和。2.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{n(n+1)}\),求其前\(n\)項(xiàng)和\(S_n\)。\(a_n=\frac{1}{n}-\frac{1}{n+1}\),\(S_n=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+\cdots+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}=\frac{n}{n+1}\)。3.數(shù)列\(zhòng)(\{a_n\}\)通項(xiàng)\(a_n=\frac{1}{(2n-1)(2n+1)}\),裂項(xiàng)后的形式是什么?裂項(xiàng)后為\(\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})\)。4.說明裂項(xiàng)求和法適用的數(shù)列通項(xiàng)特點(diǎn)。適用通項(xiàng)為分式形式,且分母能分解為兩個(gè)因式乘積,兩因式的差為常數(shù),通過裂項(xiàng)能使前后項(xiàng)相互抵消一部分的數(shù)列。五、討論題(每題5分,共4題)1.討論裂項(xiàng)求和法在數(shù)列求和中的優(yōu)勢和局限性。優(yōu)勢:能解決一些非等差等比數(shù)列求和問題,簡化計(jì)算過程。局限性:對(duì)數(shù)列通項(xiàng)形式要求高,并非所有數(shù)列都適用;裂項(xiàng)時(shí)需要一定技巧,容易出錯(cuò);對(duì)于復(fù)雜通項(xiàng),裂項(xiàng)難度大。2.舉例說明如何根據(jù)數(shù)列通項(xiàng)選擇合適的裂項(xiàng)方法。如\(a_n=\frac{1}{n(n+1)}\),分母是兩個(gè)連續(xù)自然數(shù)乘積,裂項(xiàng)為\(\frac{1}{n}-\frac{1}{n+1}\);\(a_n=\frac{1}{(2n-1)(2n+1)}\),分母兩因式差為2,裂項(xiàng)為\(\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})\),根據(jù)分母特點(diǎn)選擇裂項(xiàng)。3.當(dāng)數(shù)列通項(xiàng)分母有三個(gè)因式時(shí),如何嘗試裂項(xiàng)求和?可先將通項(xiàng)寫成部分分式形式,例如\(a_n=\frac{1}{n(n+1)(n+2)}=\frac{1}{2}[\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}]\),再分別對(duì)每一項(xiàng)按常規(guī)裂項(xiàng)方法處理,最后求前\(n\)項(xiàng)和。4.探討裂項(xiàng)求和法與其他數(shù)列求和方法的聯(lián)系與區(qū)別。聯(lián)系:都是求數(shù)列前\(n\)項(xiàng)和的方法,有時(shí)可結(jié)合使用。區(qū)別:裂項(xiàng)求和針

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論