新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題含解析_第1頁
新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題含解析_第2頁
新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題含解析_第3頁
新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題含解析_第4頁
新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆生產建設兵團二中2025年數學高二下期末學業質量監測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是虛數單位,復數的共軛復數(

)A. B. C. D.2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A.20 B.10 C.30 D.603.下面有五個命題:①函數y=sin4x-cos4x的最小正周期是π;②終邊在y軸上的角的集合是{α|α=kπA.①③ B.①④ C.②③ D.③④4.設,,則A. B., C. D.,5.已知兩變量x和y的一組觀測值如下表所示:x234y546如果兩變量線性相關,且線性回歸方程為,則=()A.- B.-C. D.6.設是定義域為的偶函數,且在單調遞減,則()A.B.C.D.7.為了解某社區居民的家庭年收入和年支出的關系,隨機調查了該社區5戶家庭,得到如下統計數據表:收入萬8.38.69.911.112.1支出萬5.97.88.18.49.8根據上表可得回歸直線方程,其中,元,據此估計,該社區一戶收入為16萬元家庭年支出為()A.12.68萬元 B.13.88萬元 C.12.78萬元 D.14.28萬元8.定積分121xdxA.-34 B.3 C.ln9.已知函數,若是圖象的一條對稱軸的方程,則下列說法正確的是()A.圖象的一個對稱中心 B.在上是減函數C.的圖象過點 D.的最大值是10.已知雙曲線上有一個點A,它關于原點的對稱點為B,雙曲線的右焦點為F,滿足,且,則雙曲線的離心率e的值是A. B. C.2 D.11.設是虛數單位,條件復數是純虛數,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.復數的模是()A.3 B.4 C.5 D.7二、填空題:本題共4小題,每小題5分,共20分。13.己知,,則______.14.執行如圖所示的程序框圖則輸出的實數m的值為______.15.的展開式中,的系數為__________(用數字作答).16.如圖,已知中,點M在線段AC上,點P在線段BM上,且滿足,若,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別為.已知.(1)若,,求的面積;(2)求的取值范圍.18.(12分)已知.(1)討論的單調性;(2)若存在及唯一正整數,使得,求的取值范圍.19.(12分)設是數列{}的前項和,,且.(I)求數列{}的通項公式;(Ⅱ)設,求.20.(12分)如圖,平面平面為等邊三角形,,過作平面交分別于點,設.(1)求證:平面;(2)求的值,使得平面與平面所成的銳二面角的大小為.21.(12分)已知拋物線:的焦點為,準線為,與軸的交點為,點在拋物線上,過點作于點,如圖1.已知,且四邊形的面積為.(1)求拋物線的方程;(2)若正方形的三個頂點,,都在拋物線上(如圖2),求正方形面積的最小值.22.(10分)已知矩陣,矩陣B的逆矩陣.(1)求矩陣A的特征值及矩陣B.(2)若先對曲線實施矩陣A對應的變換,再作矩陣B對應的變換,試用一個矩陣來表示這兩次變換,并求變換后的結果.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用復數代數形式的乘法運算化簡z,再由共軛復數的概念得到答案.【詳解】因為,所以,故選B.該題考查的是有關復數的共軛復數問題,涉及到的知識點有復數的除法運算法則,復數的乘法運算法則,以及共軛復數,正確解題的關鍵是靈活掌握復數的運算法則.2、B【解析】

根據三視圖還原幾何體,根據棱錐體積公式可求得結果.【詳解】由三視圖可得幾何體直觀圖如下圖所示:可知三棱錐高:;底面面積:三棱錐體積:本題正確選項:本題考查棱錐體積的求解,關鍵是能夠通過三視圖還原幾何體,從而準確求解出三棱錐的高和底面面積.3、B【解析】

①先進行化簡,再利用求周期的公式即可判斷出是否正確;②對k分奇數、偶數討論即可;③令h(x)=x﹣sinx,利用導數研究其單調性即可;④利用三角函數的平移變換化簡求解即可.【詳解】①函數y=sin4x﹣cos4x=(sin2x+cos2x)(sin2x﹣cos2x)=﹣cos2x,∴最小正周期T=2π2=π,∴函數y=sin4x﹣cos4x的最小正周期是π,故①②當k=2n(n為偶數)時,a=2nπ2=nπ,表示的是終邊在x軸上的角,故②③令h(x)=x﹣sinx,則h′(x)=1﹣cosx≥0,∴函數h(x)在實數集R上單調遞增,故函數y=sinx與y=x最多只能一個交點,因此③不正確;④把函數y=3sin(2x+π3)的圖象向右平移π6得到y=3sin(2x﹣π3綜上可知:只有①④正確.故選B.本題綜合考查了三角函數的周期性、單調性、三角函數取值及終邊相同的角,利用誘導公式進行化簡和利用導數判斷單調性是解題的關鍵.4、A【解析】

利用一元二次不等式的解法以及對數函數的單調性,求出集合,,然后進行交集的運算即可。【詳解】,;,故選.本題主要考查區間表示集合的定義,一元二次不等式的解法,對數函數的定義域及單調性,以及交集的運算.5、D【解析】

先計算==3,==5,代入方程即可.【詳解】==3,==5,代入線性回歸方程可得5=3+,解之得=.故選D線性回歸直線必過樣本中心.6、C【解析】

由已知函數為偶函數,把,轉化為同一個單調區間上,再比較大小.【詳解】是R的偶函數,.,又在(0,+∞)單調遞減,∴,,故選C.本題主要考查函數的奇偶性、單調性,解題關鍵在于利用中間量大小比較同一區間的取值.7、A【解析】

由已知求得,,進一步求得,得到線性回歸方程,取求得值即可.【詳解】,.又,∴.∴.取,得萬元,故選A.本題主要考查線性回歸方程的求法,考查了學生的計算能力,屬于中檔題.8、C【解析】

直接利用微積分基本定理求解即可.【詳解】由微積分基本定理可得,121x本題主要考查微積分基本定理的應用,意在考查對基礎知識的掌握情況,屬于基礎題.9、A【解析】

利用正弦函數對稱軸位置特征,可得值,從而求出解析式,利用的圖像與性質逐一判斷即可.【詳解】∵是圖象的一條對稱軸的方程,∴,又,∴,∴.圖象的對稱中心為,故A正確;由于的正負未知,所以不能判斷的單調性和最值,故B,D錯誤;,故C錯誤.故選A.本題主要考查三角函數的圖像與性質.10、B【解析】

設是雙曲線的左焦點,由題可得是一個直角三角形,由,可用表示出,,利用雙曲線定義列方程即可求解.【詳解】依據題意作圖,如下:其中是雙曲線的左焦點,因為,所以,由雙曲線的對稱性可得:四邊形是一個矩形,且,在中,,,,由雙曲線定義得:,即:,整理得:,故選B本題主要考查了雙曲線的簡單性質及雙曲線定義,考查計算能力,屬于基礎題.11、A【解析】

復數是純虛數,必有利用充分條件與必要條件的定義可得結果.【詳解】若復數是純虛數,必有所以由能推出;但若,不能推出復數是純虛數.所以由不能推出.,因此是充分不必要條件,故選A.本題主要考查復數的基本概念以及充分條件與必要條件的定義,屬于簡單題.判斷充要條件應注意:首先弄清條件和結論分別是什么,然后直接依據定義、定理、性質嘗試.對于帶有否定性的命題或比較難判斷的命題,除借助集合思想化抽象為直觀外,還可利用原命題和逆否命題、逆命題和否命題的等價性,轉化為判斷它的等價命題;對于范圍問題也可以轉化為包含關系來處理.12、C【解析】

直接利用復數的模的定義求得的值.【詳解】|,故選:C.本題主要考查復數的模的定義和求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用公式,能求出向量與的夾角的余弦值.【詳解】解:因為,,所以,,故答案為:本題考查向量的夾角的求法,解題時要認真審題,注意向量法的合理運用,屬于基礎題.14、1【解析】

先要通讀程序框圖,看到程序中有循環結構,然后代入初值,看是否進入循環體,是就執行循環體,寫清每次循環的結果;不是就退出循環,看清要輸出的是何值.【詳解】模擬執行程序,可得,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,滿足條件,,不滿足條件,退出循環,輸出m的值為1.故答案為:1.本題考查程序框圖要掌握常見的當型、直到型循環結構;以及會判斷條件結構,并得到條件結構的結果;在已知框圖的條件下,可以得到框圖的結果.15、【解析】.16、-2【解析】.,化為,故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據正弦定理和利用,得到,最后求面積;(2)由已知可得,所以,轉化為三角函數恒等變形,得到,根據角的范圍求函數的取值范圍.【詳解】解:(1)在中,∵,∴,∵,,由正弦定理得:,∴,∴,,∴.(2).∵,∴.∴,則.本題考查了利用正余弦定理解三角形,和三角恒等變換求函數的最值,第一問也可利用余弦定理求邊,利用求面積.18、(1)的單調遞減區間是,單調遞增區間是;(2)的取值范圍是.【解析】試題分析:(1)求出函數的導函數,通過對導函數符號的討論可得函數的單調性.(2)由題意得函數在上的值域為.結合題意可將問題轉化為當時,滿足的正整數解只有1個.通過討論的單調性可得只需滿足,由此可得所求范圍.試題解析:(1)由題意知函數的定義域為.因為,所以,令,則,所以當時,是增函數,又,故當時,單調遞減,當時,單調遞增.所以上單調遞減,在上單調遞增.(2)由(1)知當時,取得最小值,又,所以在上的值域為.因為存在及唯一正整數,使得,所以滿足的正整數解只有1個.因為,所以,所以在上單調遞增,在上單調遞減,所以,即,解得.所以實數的取值范圍是.點睛:本題中研究方程根的情況時,通過導數研究函數的單調性、最大(小)值、函數圖象的變化趨勢等,根據題目畫出函數圖象的草圖,通過數形結合的思想去分析問題,使問題的解決有一個直觀的形象,然后在此基礎上再轉化為不等式(組)的問題,通過求解不等式可得到所求的參數的取值(或范圍).19、(Ⅰ)an=2n.(Ⅱ)【解析】

(Ⅰ)利用數列遞推關系即可得出.(Ⅱ)利用裂項求和即可求解.【詳解】∵4Sn=an(an+2),①當n=1時得,即a1=2,當n≥2時有4Sn﹣1=an﹣1(an﹣1+2)②由①﹣②得,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),又∵an>0,∴an﹣an﹣1=2,∴an=2+2(n﹣1)=2n.(Ⅱ)∵,∴Tn=b1+b2+…+bn本題考查了數列遞推關系、裂項求和、數列的單調性,考查了推理能力與計算能力,屬于中檔題.20、(1)詳見解析(2)【解析】試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發給予證明,而線線平行的尋找與論證,往往需結合平幾條件,如三角形相似,本題可根據得,而,因此(2)利用空間向量研究二面角,首先利用垂直關系建立恰當的空間直角坐標系,設立各點坐標,利用方程組解兩個平面的法向量,利用向量數量積求夾角,最后根據向量夾角與二面角之間關系得等量關系,求的值試題解析:(1)證明:如圖,以點為原點建立空間直角坐標系,不妨設,則,由,得,則.易知是平面的一個法向量,且,故,又因為平面,平面.(2),設平面法向量為,則,故可取,又是平面的一個法向量,由為平面與平面所成銳二面角的度數),以及得,.解得或(舍去),故.考點:線面平行判定定理,利用空間向量研究二面角【思路點睛】利用法向量求解空間線面角的關鍵在于“四破”:第一,破“建系關”,構建恰當的空間直角坐標系;第二,破“求坐標關”,準確求解相關點的坐標;第三,破“求法向量關”,求出平面的法向量;第四,破“應用公式關”.21、(1);(2).【解析】

(1)通過借助拋物線的幾何性質,設,通過勾股定理可求得,借助線段關系可求得,再借助梯形面積公式最終可求得值,進而求得拋物線的方程;(2)先通過設而不求得方法分別表示出,,和直線的斜率為和的斜率,通過正方形的邊長關系代換出與直線的斜率的關系,將面積用含的式子整體代換表示,最終通過均值不等式處理可求得正方形面積的最小值.【詳解】(1)設,由已知,則,,四邊形的面積為,∴,拋物線的方程為:.(2)設,,,直線的斜率為.不妨,則顯然有,且.∵,∴.由得即,即.將,代入得,∴,∴.故正方形面積為.∵,∴(當且僅當時取等).又∵,∴,∴(當且僅當時取等).從而,當且僅當時取得最小值.結合幾何關系求解曲線方程是常見題型,解題思路是通過曲線的幾何性質和幾何關系聯立求解;直線與曲線問題是圓錐曲線中考查概率最大的一種題型,通過韋達定理求解是常規方法,本題中由于涉及坐標點較多,故采用設而不求,便捷之處在于能簡化運算,本題中通過此法搭建了與斜率的表達式,為后續代換省去不少計算步驟,但本題難點在于最終關于的因式的最值求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論