




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
課時規范練1集合基礎鞏固練1.已知集合M={x|-4<x≤1},N={x|-1<x<3},則M∪N=()A.{x|-4<x<3}B.{x|-1<x≤1}C.{0,1,2}D.{x|-1<x<4}2.(2025·八省聯考,1)已知集合A={-1,0,1},B={0,1,4},則A∩B=()A.{0} B.{1}C.{0,1} D.{-1,0,1,4}3.(2024·全國甲,文1)集合A={1,2,3,4,5,9},B={x|x+1∈A},則A∩B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,2,3,4,5}4.若集合A={2,4,8},B={xy|x∈A,y∈A},則B中所有元素的和為(A.274 B.C.394 D.5.(2024·江蘇南京模擬)已知A,B為非空數集,A={0,1},(?RA)∩B={-1},則符合條件的集合B的個數為()A.1 B.2C.3 D.46.(2024·廣東深圳模擬)定義兩集合M,N的差集:M-N={x|x∈M,且x?N},已知集合A={2,3,5},B={3,5,8},則A-(A-B)的子集個數是()A.2 B.4C.8 D.167.(2024·福建寧德三模)已知集合A={-2,0,2,4},B={x||x-3|≤m}.若A∩B=A,則m的取值范圍是()A.(1,+∞) B.[1,+∞)C.(5,+∞) D.[5,+∞)8.(多選題)(2024·湖北荊州模擬)已知集合A={1,2},B={0,1,2,3,4},集合C滿足A?C?B,則()A.1∈C,2∈CB.集合C可以為{1,2}C.集合C的個數為7D.集合C的個數為89.已知集合A={x|2<x<6},B={x||x-a|>1},若A∪B=R,則整數a的值為.10.(2024·廣東茂名模擬)已知集合A={x||x-2|≥1},B={x|2≤x<4},則圖中陰影部分表示的集合是.
綜合提升練11.(2024·江蘇宿遷三模)已知集合A={x|0<x<m},B={x|x2-3x+2>0},若?RB?A,則實數m的取值范圍為()A.(-∞,2]B.(1,2]C.[2,+∞)D.(2,+∞)12.(多選題)(2024·廣西桂林模擬)已知集合S={(a,b)|a+b=ab,a>0,b>0},T={t|a+2b=t,(a,b)∈S},則下列選項正確的是()A.112∈B.3+22∈TC.S∩T=?D.S∪T=S13.(多選題)(2024·福建龍巖模擬)設集合M={x|x=6k1+2,k1∈Z},N={x|x=6k2+5,k2∈Z},P={x|x=3k3+2,k3∈Z},則()A.M∩N≠?B.M∪N=PC.M=PD.?PM=N14.(多選題)(2024·江蘇南通模擬)設U為全集,集合A,B,C滿足條件A∪B=A∪C,那么下列各式不一定成立的是()A.B?AB.C?AC.A∩(?UB)=A∩(?UC)D.(?UA)∩B=(?UA)∩C15.(2024·湖北武漢模擬)已知集合A={-2,-1,0,1,2},集合B={x|x2-x-a<0},若A∩B={0,1},則實數a的取值范圍是.16.(13分)(2024·山西臨汾模擬)已知集合A={x|x2-6x+5<0},B={x|m+12<x<2m+2},C={x|2m-3<x<2m+3}(1)當m=2時,求(?RA)∩B;(2)若A∩B=B,A∪C=C,求m的取值范圍.創新應用練17.(多選題)(2024·河南鄭州模擬)對于R的兩個非空子集A,B,定義運算A×B={(x,y)|x∈A,y∈B},集合C是R的一個非空子集,則下列選項正確的是()A.A×B=B×AB.A×(B∩C)=(A×B)∩(A×C)C.若A?C,則(A×B)?(C×B)D.A×A表示一個正方形區域答案:1.A解析M∪N={x|-4<x<3}.故選A.2.C解析由題意可得A∩B={0,1}.故選C.3.A解析B={0,1,2,3,4,8},則A∩B={1,2,3,4}.故選A.4.B解析當y=2時,x分別取2,4,8,xy分別為1,2,4;當y=4時,x分別取2,4,8,xy分別為12,1,2;當y=8時,x分別取2,4,8,xy故B={14,15.D解析因為(?RA)∩B={-1},A={0,1},所以-1∈B,0可能屬于B,1可能屬于B,所以B={-1}或B={-1,0}或B={-1,1}或B={-1,1,0},故滿足條件的B的個數為4.6.B解析因為A={2,3,5},B={3,5,8},所以A-B={2},所以A-(A-B)={3,5},有兩個元素,則A-(A-B)的子集個數是22=4.7.D解析由A∩B=A,得A?B,由|x-3|≤m,得-m+3≤x≤m+3,則有-m+3≤-2,m+3≥4則實數m的取值范圍是[5,+∞).8.AC解析∵A={1,2},B={0,1,2,3,4},A?C?B,∴1∈C,2∈C,故A正確;當C={1,2}時,不滿足A?C,故B錯誤;集合C的個數等價于集合{0,3,4}的非空子集的個數,所以集合C的個數為23-1=7,故C正確,D錯誤.故選AC.9.4解析由不等式|x-a|>1,得x-a>1或x-a<-1,解得x<a-1或x>a+1,所以B={x|x<a-1或x>a+1}.因為A∪B=R,所以a解得3<a<5,則整數a的值為4.10.{x|2≤x<3}解析∵A={x||x-2|≥1}={x|x≤1或x≥3},∴?RA={x|1<x<3},圖中陰影部分表示的集合是(?RA)∩B,∴(?RA)∩B={x|2≤x<3}.11.D解析因為x2-3x+2>0,所以x>2或x<1,所以B={x|x>2,或x<1},所以?RB={x|1≤x≤2},又?RB?A,且A={x|0<x<m},所以m>2,所以實數m的取值范圍為(2,+∞).12.BC解析由a+b=ab(a>0,b>0)可得1a+1b=1,所以t=a+2b=(a+2b)(1a+1b)=3+2ba+ab≥3+22,當且僅當a=2b,即b=1+22,a=1+2時取等號,所以T={t|t≥3+22},3+22∈T,B正確;因為112<3+22,所以112?T,A錯誤;因為S中的元素與T中元素不同類,13.BD解析M={x|x=6k1+2,k1∈Z},N={x|x=6k2+5,k2∈Z},P={x|x=3k3+2,k3∈Z},對A,由6k1+2=6k2+5?k1=k2+12,等式不成立,故M∩N=?,A錯誤;對BCD,當k3為奇數時,可令k3=2k2+1,則3k3+2=6k2+5;當k3為偶數時,可令k3=2k1,則3k3+2=6k1+2.故M∪N=P,且N=?PM,BD正確,C錯誤.故選BD14.ABC解析當U={1,2,3},A={1},B={2,3},C={1,2,3}時,滿足A∪B=A∪C,此時,B,C不是A的子集,所以選項A,B不一定成立;?UB={1},?UC=?,A∩(?UB)={1},A∩(?UC)=?,所以C不一定成立;對于D,若?x∈(?UA)∩B,則x?A,但x∈B,因為A∪B=A∪C,所以x∈C,于是x∈(?UA)∩C,所以(?UA)∩B?(?UA)∩C,同理,若?x∈(?UA)∩C,則x∈(?UA)∩B,(?UA)∩C?(?UA)∩B,因此,(?UA)∩B=(?UA)∩C成立,所以D成立.故選ABC.15.(0,2]解析因為A∩B={0,1},所以{0,1}?B,設f(x)=x2-x-a,則f(x)<0的整數解為0,1,則f(0)<0,f(1)<0,f(-1)≥0且f(2)≥0,解得0<a≤2,則實數a的取值范圍是(0,2].16.解(1)根據題意,得A={x|x2-6x+5<0}={x|1<x<5},當m=2時,B={x|52<x<6},則(?RA)∩B={x|x≤1或x≥5}∩{x|52<x<6}={x|5≤x<(2)若A∩B=B,A∪C=C,則B?A,A?C.當B=?時,則m+1當B≠?時,則m+12<2m綜上所述,m的取值范圍是[1,32]BC解析由題意知,A×B={(x,y)|x∈A,y∈B}表示以數集A中的數為橫坐標,數集B中的數為縱坐標的點的集合,故A×B≠B×A,故A錯誤;因為A×(B∩C)={(x,y)|x∈A,y∈(B∩C)},又(A×B)∩(A×C)={(x,y)|x∈A,y∈B}
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國屠宰后鮮肉項目創業計劃書
- 中國急救輸液泵項目創業計劃書
- 中國傘花木屬項目創業計劃書
- 中國克氏原螯蝦項目創業計劃書
- 中國觀光農業園項目創業計劃書
- 2025餐廳轉讓合同標準版范本
- 2025個人貸款合同范本
- 中國尿石癥管理裝置項目創業計劃書
- 中國電阻網絡項目創業計劃書
- 中國多媒體移動通信系統項目創業計劃書
- 2024年四川省涼山彝族自治州西昌市六年級語文小升初摸底考試含答案
- 有關分手的研究報告
- JGJT405-2017 預應力混凝土異型預制樁技術規程
- JJF1059.1測量不確定度評定培訓講演稿
- 方案偽裝防護要求
- 跨境支付中的金融穩定問題
- 2024年中石油煤層氣有限責任公司招聘筆試參考題庫含答案解析
- 大數據技術綜合實訓-實驗報告
- 有限空間作業的案例分析和經驗教訓
- 家委會向學校申請征訂資料申請書
- 鍛煉健身教練員專業知識題庫及答案(通用版)
評論
0/150
提交評論