綏化學(xué)院《智能應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
綏化學(xué)院《智能應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
綏化學(xué)院《智能應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
綏化學(xué)院《智能應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
綏化學(xué)院《智能應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁綏化學(xué)院《智能應(yīng)用技術(shù)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個(gè)大型的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項(xiàng)是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計(jì)算量B.模型壓縮可能會(huì)導(dǎo)致一定程度的性能損失,但可以通過優(yōu)化算法來彌補(bǔ)C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對(duì)傳統(tǒng)機(jī)器學(xué)習(xí)模型無效D.需要在模型性能和資源消耗之間進(jìn)行平衡,找到最優(yōu)的解決方案2、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)能夠自動(dòng)進(jìn)行邏輯推理和證明。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)解決數(shù)學(xué)定理證明問題的系統(tǒng),以下關(guān)于自動(dòng)推理的描述,正確的是:()A.現(xiàn)有的自動(dòng)推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問題B.自動(dòng)推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號(hào)推理的方法,可以提高自動(dòng)推理系統(tǒng)的能力和靈活性D.自動(dòng)推理在人工智能中的應(yīng)用范圍非常有限,沒有實(shí)際價(jià)值3、在人工智能的可解釋性研究中,對(duì)于一個(gè)復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對(duì)輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是4、在人工智能的自然語言處理領(lǐng)域中,當(dāng)需要開發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類語言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語義理解D.語用分析5、人工智能中的多智能體系統(tǒng)是由多個(gè)相互作用的智能體組成的。假設(shè)在一個(gè)物流配送場景中,多個(gè)配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點(diǎn),哪一項(xiàng)是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個(gè)智能體的決策會(huì)影響整個(gè)系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略6、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越廣泛。假設(shè)利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.能夠快速檢測出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標(biāo)和輔助診斷建議C.人工智能的診斷結(jié)果總是準(zhǔn)確無誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識(shí)和臨床經(jīng)驗(yàn)在結(jié)合人工智能診斷結(jié)果時(shí)仍然非常重要7、在人工智能的遷移學(xué)習(xí)中,假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到一個(gè)特定領(lǐng)域的小數(shù)據(jù)集上。以下哪種方法能夠有效地利用預(yù)訓(xùn)練模型的知識(shí)?()A.直接在新數(shù)據(jù)集上微調(diào)預(yù)訓(xùn)練模型B.重新訓(xùn)練一個(gè)新的模型,不使用預(yù)訓(xùn)練模型C.只使用預(yù)訓(xùn)練模型的最后一層輸出D.拋棄預(yù)訓(xùn)練模型,完全依靠隨機(jī)初始化訓(xùn)練8、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.通過機(jī)器視覺技術(shù)檢測產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無需人工干預(yù)D.與機(jī)器人技術(shù)結(jié)合,實(shí)現(xiàn)自動(dòng)化生產(chǎn)和裝配9、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過學(xué)習(xí)數(shù)據(jù)的潛在分布來生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對(duì)抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對(duì)圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡單的圖像,如數(shù)字和幾何圖形,無法生成復(fù)雜的自然圖像10、在人工智能的自動(dòng)駕駛倫理問題中,假設(shè)一輛自動(dòng)駕駛汽車面臨不可避免的碰撞,必須在保護(hù)車內(nèi)乘客和避免撞到行人之間做出選擇。以下關(guān)于這種倫理困境的解決方法,哪一項(xiàng)是最具爭議的?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全,因?yàn)樗麄兪擒囕v的使用者B.隨機(jī)做出選擇,將命運(yùn)交給概率C.設(shè)計(jì)算法,根據(jù)具體情況(如行人的數(shù)量、年齡等)進(jìn)行權(quán)衡D.完全由汽車制造商決定默認(rèn)的選擇策略,用戶無法干預(yù)11、人工智能在社交媒體的內(nèi)容管理中發(fā)揮作用。假設(shè)一個(gè)社交媒體平臺(tái)要利用人工智能過濾不良信息,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于自然語言處理技術(shù)和機(jī)器學(xué)習(xí)算法,識(shí)別不良內(nèi)容B.不斷學(xué)習(xí)和更新不良信息的模式,提高過濾的準(zhǔn)確性C.人工智能過濾系統(tǒng)能夠完全杜絕不良信息的出現(xiàn),無需人工監(jiān)督D.平衡過濾的嚴(yán)格程度和用戶體驗(yàn),避免誤判正常內(nèi)容12、人工智能中的語音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z音轉(zhuǎn)換為文字。以下關(guān)于語音識(shí)別的敘述,不準(zhǔn)確的是()A.語音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語言模型和解碼器等部分B.語音識(shí)別的準(zhǔn)確率受到語音質(zhì)量、口音和背景噪聲等因素的影響C.語音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語速的語音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語音識(shí)別的性能和準(zhǔn)確率13、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個(gè)數(shù)據(jù)中心要通過人工智能分配計(jì)算資源,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動(dòng)態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強(qiáng)化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無需人工重新配置D.強(qiáng)化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況14、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題15、人工智能中的計(jì)算機(jī)視覺技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)監(jiān)測交通流量和識(shí)別車輛類型的系統(tǒng),需要在不同的天氣和光照條件下準(zhǔn)確地檢測和分類車輛。以下哪種計(jì)算機(jī)視覺技術(shù)或方法在這種復(fù)雜場景下具有更好的魯棒性和準(zhǔn)確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學(xué)習(xí)中的目標(biāo)檢測算法D.光流法16、人工智能中的語音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語速的語音識(shí)別系統(tǒng)。以下關(guān)于語音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語音識(shí)別中的關(guān)鍵步驟,用于將語音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語言模型共同作用,提高語音識(shí)別的準(zhǔn)確率C.語音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說話的場景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語音識(shí)別系統(tǒng)在復(fù)雜場景下的性能17、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。假設(shè)要解決一個(gè)復(fù)雜的優(yōu)化問題。以下關(guān)于人工智能算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.蟻群算法受螞蟻覓食行為啟發(fā),適用于求解組合優(yōu)化問題C.不同的算法適用于不同類型的問題,沒有一種算法能夠通用于所有情況D.算法的性能只取決于其理論復(fù)雜度,與實(shí)際應(yīng)用中的數(shù)據(jù)特點(diǎn)和計(jì)算環(huán)境無關(guān)18、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?9、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識(shí)和模型來解決新的問題。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對(duì)于遷移學(xué)習(xí)的成功至關(guān)重要20、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個(gè)參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對(duì)數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計(jì)算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)21、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法。考慮一個(gè)優(yōu)化問題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對(duì)于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機(jī)的,沒有任何規(guī)律可循22、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù),旨在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,但又不希望共享各自的數(shù)據(jù)。那么,聯(lián)邦學(xué)習(xí)是如何實(shí)現(xiàn)這一目標(biāo)的?()A.將所有數(shù)據(jù)集中到一個(gè)中心服務(wù)器進(jìn)行訓(xùn)練B.每個(gè)機(jī)構(gòu)只上傳模型參數(shù),在云端進(jìn)行聚合C.通過加密技術(shù)直接共享原始數(shù)據(jù)進(jìn)行訓(xùn)練D.不需要數(shù)據(jù)交互,各自獨(dú)立訓(xùn)練模型23、在人工智能的異常檢測任務(wù)中,例如檢測網(wǎng)絡(luò)中的異常流量或金融交易中的欺詐行為。假設(shè)正常數(shù)據(jù)的模式較為復(fù)雜,而異常數(shù)據(jù)相對(duì)較少且具有多樣性。以下哪種方法在這種情況下更適合進(jìn)行異常檢測?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.無監(jiān)督學(xué)習(xí)方法,自動(dòng)發(fā)現(xiàn)異常模式C.監(jiān)督學(xué)習(xí)方法,使用有標(biāo)注的異常數(shù)據(jù)進(jìn)行訓(xùn)練D.人工檢查所有數(shù)據(jù),識(shí)別異常24、人工智能中的知識(shí)圖譜是一種用于整合和表示知識(shí)的結(jié)構(gòu)。假設(shè)我們要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的說法,哪一項(xiàng)是正確的?()A.知識(shí)圖譜只能表示簡單的事實(shí)關(guān)系B.構(gòu)建知識(shí)圖譜不需要領(lǐng)域?qū)<业膮⑴cC.可以通過知識(shí)圖譜進(jìn)行知識(shí)推理和查詢D.知識(shí)圖譜的更新和維護(hù)非常容易25、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動(dòng)駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場景中做出完美的決策,不會(huì)出現(xiàn)錯(cuò)誤C.自動(dòng)駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過深度學(xué)習(xí)算法進(jìn)行實(shí)時(shí)的環(huán)境感知和決策制定D.自動(dòng)駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患26、自然語言處理是人工智能的重要研究方向之一。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)回答用戶問題的智能客服系統(tǒng),以下關(guān)于自然語言處理在該系統(tǒng)中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞法分析、句法分析和語義理解等技術(shù)有助于理解用戶輸入的問題B.機(jī)器翻譯技術(shù)可以將用戶的問題翻譯成其他語言,以便更好地處理C.利用大規(guī)模的語料庫和預(yù)訓(xùn)練模型,可以提高回答的準(zhǔn)確性和合理性D.自然語言處理技術(shù)能夠完美理解人類語言的所有含義和語境,不會(huì)出現(xiàn)誤解27、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于預(yù)測股票價(jià)格的人工智能模型,但用戶對(duì)模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量28、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無論資源如何有限,都不能對(duì)模型進(jìn)行任何簡化和壓縮29、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個(gè)基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準(zhǔn)確診斷所有疾病,無需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗(yàn)和判斷,因?yàn)槿斯ぶ悄芩惴ǜ泳_C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專業(yè)知識(shí)和臨床經(jīng)驗(yàn)仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準(zhǔn)確性不受數(shù)據(jù)質(zhì)量和多樣性的影響30、在自然語言處理中,詞向量是一種重要的表示方法。假設(shè)要對(duì)一段文本進(jìn)行語義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對(duì)詞語的表示就越精確,不會(huì)出現(xiàn)語義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語之間的語義關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論