專題10《有理數的除法》過關檢測年暑假小升初數學銜接(蘇科版)_第1頁
專題10《有理數的除法》過關檢測年暑假小升初數學銜接(蘇科版)_第2頁
專題10《有理數的除法》過關檢測年暑假小升初數學銜接(蘇科版)_第3頁
專題10《有理數的除法》過關檢測年暑假小升初數學銜接(蘇科版)_第4頁
專題10《有理數的除法》過關檢測年暑假小升初數學銜接(蘇科版)_第5頁
已閱讀5頁,還剩6頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年蘇科版暑假小升初數學銜接過關檢測專題10《有理數的除法》一.選擇題1.(2021秋?龍鳳區校級期末)在4:9中,如果前項增加8,要使比值不變,后項應增加()A.16 B.17 C.18 D.19解:∵(4+8)÷4=12÷4=3,∴4:9的前項增加8,要使比值不變,后項應該乘3或增加:9×3﹣9=27﹣9=18.故后項應增加18.故選:C.2.(2021秋?道里區期末)下面結論正確的有()(1)如果保持圓的半徑不變,圓的周長與圓周率成正比例.(2)如果平行四邊形的面積一定,它的底和高成反比例關系.(3)小明從家到學校的時間與他行走的速度成反比例.(4)書的總頁數一定,已看的頁數與未看的頁數成正比例關系.A.(1)(2) B.(2)(3) C.(3)(4) D.(2)(4)解:(1)如果保持圓的半徑不變,圓的周長也就一定,不存在變量,所以如果保持圓的半徑不變,圓的周長與圓周率不成正比例,故(1)不符合題意;(2)因為平行四邊形的面積=底×高,所以如果平行四邊形的面積一定,它的底和高成反比例關系,故(2)符合題意;(3)因為小明從家到學校的路程等于小明從家到學校的時間與他行走的速度的乘積,所以小明從家到學校的時間與他行走的速度成反比例,故(3)符合題意;(4)因為書的總頁數等于已看的頁數與未看的頁數的和,所以書的總頁數一定,已看的頁數與未看的頁數不成正比例關系,故(4)不符合題意;故選:B.3.(2021秋?永吉縣期末)計算:的結果為()A.﹣5 B.5 C. D.解:原式=1×(﹣)=﹣,故選:C.4.(2021秋?宜賓期末)下列說法:①若|a|=a,則a為正數;②若a,b互為相反數,且ab≠0,則=﹣1;③若a2=b2,則a=b;④若a<0,b<0,則|ab﹣a|=ab﹣a.其中正確的個數有()個.A.1 B.2 C.3 D.4解:①若|a|=a,則a為非負數,不符合題意;②若a,b互為相反數,且ab≠0,則=﹣1,符合題意;③若a2=b2,則a=b或a=﹣b,不符合題意;④若a<0,b<0,則|ab﹣a|=ab﹣a,符合題意.故選:B.5.(2021秋?黔江區期末)下列結論:①一個數和它的倒數相等,則這個數是±1和0;②若﹣1<m<0,則;③若a+b<0,且,則|a+2b|=﹣a﹣2b;④若m是有理數,則|m|+m是非負數;⑤若c<0<a<b,則(a﹣b)(b﹣c)(c﹣a)>0;其中正確的有()A.1個 B.2個 C.3個 D.4個解:∵0沒有倒數,∴①錯誤.∵﹣1<m<0,∴<0,m2>0,∴②錯誤.∵a+b<0,且,∴a<0,b<0.∴a+2b<0,∴|a+2b|=﹣a﹣2b.∴③正確.∵|m|≥﹣m,∴|m|+m≥0,∴④正確,∵c<0<a<b,∴a﹣b<0,b﹣c>0,c﹣a<0.∴(a﹣b)(b﹣c)(c﹣a)>0正確.∴⑤正確.故選:C.6.(2021秋?萬州區期末)對于有理數x,y,若<0,則++的值是()A.﹣3 B.﹣1 C.1 D.3解:∵<0,∴x,y異號.∴xy<0,∴==﹣1,當x>0時,y<0,則==﹣1,==1,∴原式=﹣1+(﹣1)+1=﹣1.當x<0時,y>0,則則==1,==﹣1.∴原式=﹣1+1﹣1=﹣1.故選:B.7.(2021秋?黑龍江期中)()的倒數比它的本身大.A.假分數 B.真分數 C.帶分數解:∵真分數是分子小于分母的分數,∴真分數的倒數大于它本身.故選:B.8.(2021秋?黑龍江期中)125÷×8=()A.100000 B.10 C.10000解:125÷×8=125×100×8=100000,故選:A.9.(2020秋?濟南期末)取一個自然數,若它是奇數,則乘以3加上1,若它是偶數,則除以2,按此規則經過若干步的計算最終可得到1.這個結論在數學上還沒有得到證明.但舉例驗證都是正確的.例如:取自然數5.經過下面5步運算可得1,即:如圖所示.如果自然數m恰好經過7步運算可得到1,則所有符合條件的m的值有()A.3個 B.4個 C.5個 D.6個解:根據分析,可得則所有符合條件的m的值為:128、21、20、3.故選:B.二.填空題10.(2021秋?樺甸市期末)計算:(﹣28)÷7×=﹣.解:(﹣28)÷7×=(﹣28)××=(﹣4)×=﹣,故答案為:﹣.11.(2021秋?江油市期末)已知|x|=3,|y|=,且xy<0,則=﹣15.解:因為|x|=3,|y|=,所以x=±3,y=±,又因為xy<0,所以x=3,y=﹣或者x=﹣3,y=,則=﹣15.故答案為:﹣15.12.(2021秋?鐵東區期末)﹣21÷7×=﹣.解:﹣21÷7×,=﹣21××,=﹣.故答案為:﹣.13.(2021秋?云夢縣校級月考)求所有分母不超過100的正的真分數的和,即:=2475.解:=.=====2475.故答案為:2475.14.(2021秋?南開區期中)在﹣1,2,﹣3,0,5這五個數中,任取兩個相除,其中商最小的是﹣5.解:∵﹣3<﹣1<0<2<5,∴所給的五個數中,最大的數是5,絕對值最小的負數是﹣1,∴任取兩個相除,其中商最小的是:5÷(﹣1)=﹣5.故答案為:﹣5.15.(2020秋?浦東新區期中)2中有7個.解:因為2=,所以÷=×3=7;或者:因為2==7×,所以2中有7個.故答案為:7.16.(2019秋?桂林期末)1930年,德國漢堡大學的學生考拉茲,曾經提出過這樣一個數學猜想:對于每一個正整數,如果它是奇數,則對它乘3再加1;如果它是偶數,則對它除以2.如此循環,最終都能夠得到1.這一猜想后來成為著名的“考拉茲猜想”,又稱“奇偶歸一猜想”.雖然這個結論在數學上還沒有得到證明,但舉例驗證都是正確的,例如:取正整數5,最少經過下面5步運算可得1,即:5168421如果正整數m最少經過6步運算可得到1,則m的值為10或64.解:如圖,利用倒推法可得:由第6次計算后得1,可得第5次計算后的得數一定是2,由第5次計算后得2,可得第4次計算后的得數一定是4,由第4次計算后得4,可得第3次計算后的得數是1或8,其中1不合題意,因此第3次計算后一定得8由第3次計算后得8,可得第2次計算后的得數一定是16,由第2次計算后得16,可得第1次計算后的得數是5或32,由第1次計算后得5,可得原數為10,由第1次計算后32,可得原數為64,故答案為:10或64.17.(2020秋?紅谷灘區校級期中)若a<0,b<0,c>0,則<0.解:∵a<0,b<0,∴a+b<0,∵c>0,∴<0.故答案為:<.18.小明8天閱讀了一本書的,小杰6天閱讀了同一本書的,小明平均每天閱讀這本書的(填幾分之幾);他比小杰看得慢(填“快”或“慢”).解:÷8=;÷6=.∵<,∴他比小杰看得慢.答:小明平均每天閱讀這本書的;他比小杰看得慢.三.解答題19.(2020秋?靜安區期末)計算:.解:原式=÷×=××=.20.(2021秋?西城區校級期中).解:==.21.(2021秋?徐匯區校級月考)計算:.解:原式=×﹣×+×=﹣+=.22.(2021秋?偃師市期中)已知|x|=,|y|=.(1)求x+y的值;(2)若xy<0,求的值.解:(1)∵|x|=,|y|=,∴x=±,y=±,當x=,y=時,x+y==,當x=,y=﹣時,x+y==,當x=﹣,y=時,x+y=﹣=﹣,當x=﹣,y=﹣時,x+y=﹣=﹣,綜上,x+y的值為±或±;(2)∵|x|=,|y|=,∴x=±,y=±,又∵xy<0,∴x與y異號,當x=,y=﹣時,=﹣,當x=﹣,y=時,=﹣,綜上,的值為﹣.23.(2019秋?昌平區校級期中)我們知道,,顯然a÷b與b÷a的結果互為倒數關系.小明利用這一思想方法計算的過程如下:因為=﹣20+3﹣5+12=﹣10.故原式=.請你仿照這種方法計算:.解:因為===﹣7+9﹣28+12=﹣14;所以=﹣.24.(2018秋?灌云縣月考)如圖,小明有4張寫著不同數的卡片,請你按照題目要求抽出卡片,完成下列問題.(1)從中取出2張卡片,使這2張卡片上數字的乘積最大,如何抽取?最大值是多少?(2)從中取出2張卡片,使這2張卡片上數字相除的商最小,如何抽取?最小值是多少?解:(1)抽﹣3和﹣5,最大值為:﹣3×(﹣5)=15;(2)抽1和﹣5,最小值為:(﹣5)÷1=﹣5;25.(2017秋?懷柔區期末)計算:3×(﹣)÷(﹣1).解:原式==.26.(2018秋?康巴什期中)閱讀下面的解題過程:計算:(﹣)÷(﹣+﹣)方法一:原式=(﹣)÷[(+)﹣(+)]=(﹣)÷(﹣)=﹣×3=﹣方法二:原式的倒數為(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣通過閱讀以上解題過程,你認為哪種方法更簡單,選擇合適的方法計算下題:(﹣)÷(﹣+﹣).解:原式的倒數為(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣14.故原式=﹣.27.(2021春?銅梁區校級期末)對于一個位數為偶數的多位數,如果在其中間位插入一位數k(0≤k≤9,且k為整數)就得到一個新數,我們把這個新數稱為原來的一個晉級數,如234711中間插入數字2可得它的一個晉級數2342711.請閱讀以上材料,解決下列問題:(1)若一個數是1245的晉級數,且這個晉級數各數位上的數字之和能被5整除,則這個數可能是12345或12845;(2)若一個兩位數的晉級數是這個兩位數的9倍,請求出所有滿足條件的晉級數.解:(1)設1245的晉級數為12k45,由題意得,各位數字之和能被5整除,即12+k能被5整除,又0≤k≤9,且k為整數,因此k=3或k=8,故答案為:12345或12845.(2)設這個兩位數的十位數字為a,個位數字為b,因此這個兩位數為10a+b,它的晉級數為100a+10k+b,由題意得:100a+10k+b=9(10a+b),即:5a+5k=4b,又∵0<a≤9,0≤b≤9,0≤k≤9①k=0時,5a=4b,a、b為正整數,0<a≤9,0≤b≤9,∴a=4,b=5;這個兩位數為45,它的晉級數為:405;②k=1時,5a+5=4b,a、b為正整數,0<a≤9,0≤b≤9,∴a=3,b=5;這個兩位數為35,它的晉級數為:315;③k=2時,5a+10=4b,a、b為正整數,0<a≤9,0≤b≤9,∴a=2,b=5;這個兩位數為25,它的晉級數為:225;④k=3時,5a+15=4b,a、b為正整數,0<a≤9,0≤b≤9,∴a=1,b=5;這個兩位數為15,它的晉級數為:135;⑤k=4時,5a+20=4b,a、b為正整數,0<a≤9,0≤b≤9,∴a、b無解⑥k=5、6、7、8、9時,均無解;綜上所述,所有滿足條件的晉級數為:135,225,315,405.答:所有滿足條件的晉級數為:135,225,315,405.28.(2018秋?鄂托克旗期末)小華在課外書中看到這樣一道題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論