




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Thefront-runners’guidetoscalingAI
Lessonsfromindustryleaders
>
accenture
>
Authors
SenthilRamani
GlobalLeadforData&AI,
Accenture
LanGuan
ChiefAIOfficer,Accenture
Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
PhilippeRoussiere
GlobalLeadfor
InnovationandAI,
AccentureResearch
2
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders3
Abouttheresearch
Wesurveyed2,000C-suiteanddata-science
executives,wholead1,998oftheworld’slargest
companies(revenuesgreaterthan$1billion,whichare
headquarteredin15countries(Australia,Brazil,Canada,China,Germany,France,India,Italy,Japan,SaudiArabia,Singapore,Spain,UnitedArabEmirates,UnitedKingdomandUnitedStates)andoperateinnineindustries
(banking,insurance,energy,consumergoodsand
services,lifesciences,utilities,retail,publicservicesandcommunicationsandmedia).Thesurvey,fieldedfrom
JunetoJuly2024,aimedtoshedlightonhowcompaniesdevelopanddeployAImodelstocreatefinancialand
non-financialvalue.Thesurveycoveredtopicssuch
asorganizations’dataandAIstrategy,dataandAI
architecture,budgetsfor—andinvestmentsin—strategicbets,talentstrategy,ecosystemstrategy,responsibleAI,AI-relatedchallengesandAIadoptionrates.
Toidentifythemostimportantstrategicbets(see“Get
strategic,”above),wealsointerviewednumerousC-suiteexpertswithinandoutsideAccenture.Inaddition,we
deployedmachinelearningtoidentifyboththekey
capabilitiesassociatedwithscalingstrategicbetsand
companies’progressindevelopingthosecapabilities.
TheresearchwasfurtherenrichedwithinsightsfromourextensiveexperiencehelpingclientsscaleAIsolutions.Bydrawingonthesediverseinputs,ourfindingsthus
capturebothstrategicperspectivesonAIandreal-worldexecutionchallenges.
Forthepurposesofthisreport,“scalingAI”refersto
theprocessofexpandingAIimplementationacrossan
enterprisetoachievebroader,moreimpactfuloutcomes.ScalingincludesintegratingAIintodiversebusiness
processesandworkflows;ensuringwidespreadadoptionacrossassetsandemployees;seamlesslyintegrating
AIwithexistingsystems;drivinginnovationtogaina
competitiveedgeinthemarket;andotherwiseimprovingkeyperformancemetrics.“GenerativeAI”describes
anumbrellatermforartificialintelligencethatcan
producebrand-newoutput—suchastext,images,videos,audioandcode.
Executivesummary
ThougheverybusinessmaywantanAI-powerededge,manycompaniesarestillstrugglingtoadvancebeyondtheirinitial
AIexperiments.Abigreasonforthis,ourresearchalsoshows,islowdata“readiness”—whichariseswhenalltypesofdata,
especiallyunstructureddata,arenotusedtothemax.
Encouragingly,mostbusinessleadersrecognizethischallenge.Forexample,70%ofthecompanieswesurveyedacknowledgedtheneedforastrongdatafoundationwhentryingtoscaleAI.
Data,ofcourse,isn’ttheonlyobstacletoenterprisereinvention
withgenAI.OutdatedITsystems,aswellasworkers’lackofaccessto,respectively,genAItools,comprehensivetrainingandclear
guidancefromleadershiparesignificantbarriers,too.
Atthesametime,ourresearchrevealedthatasmallminorityofcompanies(“front-runners”)arealreadyachievingconsiderablesuccessatreinventingtheirenterpriseswithgenAI.These
companiesconsistentlygetoneveryimportantthingright:They combinewhatwecall“tablestakes”investmentsingenAIwith“strategicbets”(seesidebar,“Getstrategic”).
Front-runners,forexample,useagenticAIintheirtablestakesto
boostefficiency.Andintheirstrategicbets,theydeployagenticAItoradicallyreinventtheirorganizationalprocessesandworkflows.
70%ofthecompanies
wesurveyed
acknowledgedthe
needforastrongdata
foundationwhen
tryingtoscaleAI.
Forbusinesses,securingasustainedadvantageovercompetitorswaslongtheHolyGrail—acoveted,yetelusiveprize.Today,
however,generativeartificialintelligenceandotherformsofAI
haveflippedthescript,bringingthepreviouslyunattainablewithinreach.That’swhytheworld’slargestcompaniesareinvesting
heavilyindataandAI.
ButreinventingtheenterprisewithgenerativeAI(genAI)isn’t
simplyamatterofdeployingafewchatbots.ReinventionisaboutbuildingadvancedAIcapabilitieslike“agenticarchitecture,”
networksofAIagentsthatgobeyondautomatingroutinetaskstoorchestratingentirebusinessworkflows.
Endowedwithsophisticatedreasoning,AIagentscollaborate
autonomouslytoimprovequality,productivityandcost-efficiencyatscale.Agenticarchitectureisspreadingfast:one-thirdofthe
companieswesurveyedforthisreport(See‘’Abouttheresearch’’onpage38)arealreadyusingAIagentstostrengthentheir
innovationcapabilities.
ReinventionthusrequiresintegratingAIdeeplyintothecoreofacompany’sstrategy.Todothis,businesses,undertheproactiveleadershipoftheirCEOandboard,mustgobeyondsurface-levelapplicationsofAIandprioritizestructuralandstrategicchangesthatunlockAI’sfullpotential.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders4
Getstrategic
“Strategicbets”aresignificant,long-term
investmentsingenAIthatfocusonthe
coreofacompany’svaluechain(suchas
underwritingandclaimsforaninsurer,
assetmanagementforautilityand,R&D
foralifesciencesfirm)andthatalsooffer
averylargepayoff.Strategicbetsaimto
maximizethepotentialofgenAItodrive
transformative,industry-specific,process-
levelefficiencies,aswellasexceptional
productivity,innovationandrevenuegrowth.
“Tablestakes”aretheopposite:foundational
investmentsthatdrivebroadAIadoptionwithinanorganizationandvalidatethetechnology’s
abilitytohandlespecificusescases(suchas
customer-supportcentersthatseamlesslymovebetweentextandvoiceinteractions).While
tablestakesofferonlyincrementalvalue,theyarestillessentialproofpointsofAImaturity.
Soevenastheyfocusonafewstrategicbetstodriveenterprisereinvention,companies
shouldcontinuewithtablestakesaswell.
Touncoverthemostimportantstrategicbets
ineachofthenineindustrieswestudied,we
solicitedtheviewsofAccentureexpertswhohaveadvisedclientson2,000recentgenAIprojects.
WealsointerviewedexternalAIexpertsatvariouslargecompaniesaroundtheworld.Through
theseconsultations,wearrivedat105strategicbets—orjustover11perindustry,onaverage.
(Someindustrieshadmorestrategicbetsthanothers;see“Appendix1:The105strategicbets”and“Appendix2:Researchmethodology.”).
Later,oursurveyof2,000executives*frommanyoftheworld’slargestcompaniesrevealedthe
extenttowhichtheseorganizationshaveadoptedgenAIbyscalingtheirrespective,industry-
focused,strategicbets.Companiesintheutilitiesindustry,say,wereaskedabouttheirexperiencewith10utilities-focusedstrategicbets.One
question,forexample,assessedcompanies’levelofgenAIadoptionaroundtheirstrategicbeton“augmentedassetmanagement”.Companies
couldthenansweralongaspectrum,from“noadoption”to“fullscaling”acrosstheenterprise.
Wefoundthat34%ofsurveyed
companieshavescaledatleastone
strategicbet.SuchcompaniesalsospendsignificantlymoreoncloudandAI
(devoting51%oftheirtechnologybudgetstotheseareas)thandocompaniesthat
havenotscaledanystrategicbets(45%oftheirrespectivetechbudgets).
5
>Thefront-runners’guidetoscalingAI:LessonsfromindustryleadersThesurveycovered2,000executives,from1,998companies.
Thestatedmarginoferroris+/-2.2percentagepointsatthe95%confidenceintervalmidpoint.
Companiesthatscalestrategicbetsareusually
delightedwiththeirfinancialperformanceaswell.Forinstance,comparedtocompetitorsthathave
notdoneso,companiesthathavescaledatleastonestrategicbetarenearlythreetimesmorelikelyto
havetheirreturnoninvestment(ROI)fromgenAIsurpasstheirforecasts.
Butregardlessofwhethertheyhavealot,oralittle,worktodobeforetheyscalemorestrategicbets,allthecompanieswesurveyedexpectbigthingsfromreinventionwithgenAI.Onaverage,theseorganizationsexpecta13%
increaseinproductivity,a12%increaseinrevenuegrowth,an11%improvementincustomerexperience,andan11%decreaseincostswithin18monthsof
deployingandscalinggenAIacrosstheirenterprise.
Drawingonourempiricalresearchandextensiveclientwork,thisreport
exploresthedistinguishingtraitsofAIreinvention-readycompanies,which
remainpoorlyunderstood.Inthefollowingpages,weidentifytheessential
dataandAIcapabilitiesthatfront-runnerspossess—anddescribesfive
imperativesthatallowfront-runnerstoscaletheirstrategicbetseffectively(foradditionalanalysisofthefiveimperatives,seetheAccenturereports,“
Making
ReinventionRealwithGenAI
”and“
ReinventionintheageofgenerativeAI
”):
1.Leadwithvalue
2.Reinventtalentandwaysofworking
3.BuildanAI-enabled,securedigitalcore
4.ClosethegaponresponsibleAI
5.Drivecontinuousreinvention
Asthisreportmakesclear,artificialintelligencehasalreadymovedpastits
familiarroleasapowerfultoolforboostingefficiency.Whenusedtoitsfull
potential,AIisnowsomethingfargreater:anunstoppableforceforenterprisereinvention,allowingcompaniestogrowfasterandinnovatebetterthanrivals.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders6
Whatmakesacompanyreinvention-readyforAI?
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders7
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders8
In2022,weidentifiedasmallgroupofcompaniesthat
wereleadersinfoundationaldataandAIcapabilities
(seeAppendix2).1Today,these“AIreinvention-ready”
companiesstillexcelatthebasics.Butthey’realsohoningtheirgenAIcapabilitiestogreateffect.
AIreinvention-readycompanies,ourresearchalsoshows,representonlyafractionoftheworld’slargestbusinesses(just15%oftheorganizationswestudied).Inourschema,thesecond-mostadvancedgrouparecompaniesthat
areprogressingwithAI(43%ofcompanies),followedbycompaniesthataremerelyexperimentingwithAI(42%).
Here’showwearrivedatthesethreegroups.Wecreatedanindextomeasureandcategorizecompaniesbasedontheirmaturityindevelopinganddeployingthecapabilitiesthat
aremostcriticaltoscalingstrategicbetsingenAI.
Wediscoveredthatthemostadvancedgroup,AI
reinvention-readycompanies,haveachievedhighlevels
ofmaturity(seetheirlarge“webs”inFigure1),inboththefoundationalcapabilitiesandinwhatwecallthe“new
dataandAIessentialcapabilities”forgenAI.Thelatterarecomprisedoflargelanguagemodeloperations(LLMOps)maturity,datamanagementandgovernance(DM&G)–
newessentials,datasource,foundationmodelspractice,andtalentpractice.(SeeAppendix2forthefulllistof
foundationalandnewcapabilities.)
Figure1:Webofprogress
Reinvention-readycompanieshavemorematuredataandAIcapabilities
capabilities
experimentingwithAI
F1
progressingwithAI
F1
AIreinvention-ready
F1
F1:Data&AIstrategy
F2:AI
platformmaturity
75%
50%
25%
F3:DM&Gmaturity
&AIessentialcapabilities
N1
N1
:LLMOpsMaturity
N2:DM&G
new
essentials
N1
75%
50%
25%
N5
N4N3
N5
N4N3
N3:Datasource
Foundational
F5
F3
F4
F2
F5
F3
F4
F2
F5
F3
F4
F2
F5:RAImaturity
F4:Talent
maturity
NewData
N1
N5
N4N3
N2
N5:Talentpractice
N2
N2
N4:Foundationmodelspractice
Source:AccentureResearch.Thelargertheareaoftheweb,themorematurethecapabilities.
Figure2:AppreciatetheEight
Only8%oforganizationsareAIreinvention-readyfront-runners
Meanwhile,companiesthatareprogressingwithAIdemonstrate
8%
7%
43%
42%
intermediatelevelsofmaturityinthosecapabilities(medium-sizedwebsinFigure1).Andcompaniesthatareexperimentinghavecomparativelylow
front-runners
fast-followers
levelsofmaturity(smallwebs).
AI
reinvention-ready
AIreinvention-readycompanieshave,inshort,developedstrongdigitalcores,whichareessentialforscalingAIanddata-driveninitiatives,
ensuringdataaccessibility,computingperformanceandsecurity.2
Withoutastrongdigitalcore,businessesaremorelikelytounderperformandstruggletoadapttorapidlychangingenvironments.
That’sthemacroview.Themicroview,however,showsthatnotall
progressingwithAI
reinvention-readycompaniesareequallyproficientatscalingstrategicbetsingenAI.Infact,wefoundthatsomeofthesecompanies(“front-runners”)havealreadyscaledmultiplestrategicbets,whileothers(“fastfollowers”)haveyettoscaleanystrategicbets(Figure2).
experimentingwithAI
Source:AccentureResearch.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders9
Breakingaway—how
front-runnersarescalingAI
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders10
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders11
Whatdistinguishesfront-runnersfromfast-followersistheirrelativeaptitudeatdeployingandscalingstrategicbets.
Indeed,front-runnersnotonlyplacemorestrategicbetsbutalsoscalethematasignificantlyhigherratethanothercompaniesdo.AsFigure3illustrates,front-runnershave,onaverage,alreadyscaled34%of
thestrategicbets(orthreetofourbets)thataremostrelevanttotheirindustry;another40%offront-runners’strategicbetsareintheearlystagesofscaling.
Fast-followers,ontheotherhand,havenotyetfullyscaledany
strategicbets,withonly33%intheearlystagesofscaling.The
numbersforcompaniesthatareprogressingwithAI(8%ofstrategic
betsscaled,32%intheearlystages)andforcompaniesthatareonlyexperimentingwithAI(5%and28%,respectively)similarlyunderscorethegaptheyneedtoclose.
Figure3:Scaleforsuccess
front-runnershavescaled34%oftheirstrategicbets,onaverage
front-runners
fast-followers
progressingwithAI
experimentingwithAI
60%
30%
0%
60%
30%
0%
60%
30%
0%
60%
30%
0%
40%
23%
3%
34%
51%
16%
0%
33%
44%
8%
16%
32%
45%
22%
28%
5%
not
plannedearlyscaled
stages
planned
Source:AccentureResearch.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders12
Sowhydofront-runnersexcelatscalingstrategic
bets?Afterall,morefast-followers(89%)thanfront-runners(81%)havealreadydevelopedthefiveAI
foundationalcapabilitiesreferencedinFigure1.
Tounderstandwhy,lookfirsttothenewdataandAI
essentialcapabilitiesforgenAI.Here,front-runners
haveaclearedge:Wefoundthat28%offront-runnershavedevelopedallfiveofthesecapabilities,comparedtoonly19%offast-followers.
Theedgeisalsoevidentwhenfront-runnersare
comparedtoothercompanies.AsFigure4shows,97%offront-runnershavedevelopedthreeormoreofthenewdataandAIessentialcapabilitiesfor
genAI,comparedtojust5%ofcompaniesthatareexperimentingwithAI(Figure4).
Figure4:ThenewdataandAIessentialcapabilitiesforgenAI
Nearlyallfront-runnershaveadoptedthreeormoreofthese
front-runners
fast-followers
progressingwithAI
experimentingwithAI
97%offront-runnershaveachievedatleast3outof5advancedmaturitylevelofNewData&AIEssential
capabilities
Only5%ofexperimentingwithAImanagetoachieve3outof5advancedmaturitylevel
ofNewData&AIEssentialcapabilities
#ofNewDataandAI
1outof5
2outof5
3outof5
4outof5
5outof5
0outof5
EssentialCapabilities
achievingadvancedlevel
Source:AccentureResearch.
Considerotherdistinguishingtraitsoffront-runners.ThesecompaniesaremorelikelytohavestrongCEOandboard
sponsorshipfortheirAIinvestmentsthanfast-followers
(19%vs.5%,respectively,ofsurveyedcompanies).Front-runnersarealsomorelikelythanfast-followers(59%vs.
36%)tohavefullyintegratedtheircoreAIstrategy,criticalprocesses,andtechnologycapabilitiesintoacohesive
framework.Morebroadly,front-runnersarethreetimes
morelikelythanothercompaniestohaveachievedahighlevelofmaturitywiththeirAIplatforms.
Front-runnersprioritizepeople-centeredchange,too:
They’refourtimesmorelikelythanfast-followerstofocusonculturalissuesthatimpedechange;threetimesmorelikelytoemphasizetalentalignmentandtransparent
communication;threetimesmorelikelytouseinsightsfrombehavioralsciencetocontinuouslymonitorthe
impactofAI-drivenchange;andtwotimesmorelikelytoofferstructuredtrainingprogramsforemployees.
Tobesure,front-runnersdon’thaveanedgeateverythingAI-related.Fast-followers,forexample,areparticularly
strongattalentdevelopment;96%offast-followersfocusoncultivatingspecializedAItalent(suchasAIengineers),comparedto88%offront-runners.
Fastfollowersareneverthelessheldbackinthisarea,
ourresearchalsorevealed,becausetheymostlylack
acentralizedoperatingmodel—suchasa“centerof
excellence”thatservesasthefocalpointforacompany’sAIstrategy,developmentanddeployment.Forexample,only16%offast-followershaveacentralizedoperating
model,while57%offront-runnersdo.
Anotherimportantdifferentiatorforfront-runnersisthat
they’remorelikelytobeskilledatusingandcontinuouslyimprovingautonomousAIagentsthataretailoredto
industryneeds.Forinstance,65%offront-runnersare
skilledinthisarea,comparedto50%offast-followers.
Front-runners,likewise,aremoreadeptthanfast-followersatdefiningthebusinessvaluefromtheirAIusecases.
Whenitcomestodata,fast-followersdopossesscertainadvantages.Forexample,96%areverystrongindata
governance,comparedto83%offront-runners.Dittofordataplatforms(98%vs.90%,respectively).
Butinmanyotherdata-relatedpractices,fast-followers
lagfarbehind.Forexample,17%offront-runnersuse
“retrieval-augmentedgeneration”toenhancetheirLLMs,whileonly1%offast-followersdo.Similarly,front-runners
aremuchmorelikelythanfast-followerstodothingslikeuse“knowledgegraphs”tostructureandcontextualizedata(26%v.3%)andmanagedataeffectivelyoverthe
entiredatalifecycle(22%vs.6%).
Whenitcomestoleveragingdiversedatasources,front-
runnersholdaclearedgeaswell.Forinstance,they’re
morelikelythanfast-followerstoheavilyusezero-party
data(44%vs.4%),second-partydata(30%vs.7%),third-partydata(25%vs.8%)andsyntheticdata(35%vs.6%).Fast-followers,incontrast,areonlyslightlymorelikely
thanfront-runnerstoheavilyusefirst-partydata(60%vs.67%)andtacitknowledge(72%vs.68%).3
Beforegoingallinonstrategicbets,Telstra,Australia’s
leadingtelecommunicationscompany,wiselysetabout
simplifyingandmodernizingitsdataecosystem.This
involvesconsolidatingover40platformsintoasmall,
integrated,datafoundation.Oncetherearchitectingis
completed,TelstrawillbefarbetterplacedtorapidlyscaleitsgenAIcapabilities.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders13
TheAIrace—whichindustriesaretakingthelead
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders14
Ourresearchalsorevealedtheindustriesthathave
madethemostprogressscalingstrategicbets.Figure
5illustrateshowfront-runnersaremostprevalent
inthelifesciences(accountingfor12%ofsurveyed
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
companiesinthatindustry)andleastcommoninretail(2%,respectively).
Figure5:TheAIlife
front-runnersaremostprevalentinthelife-sciencesindustry
fast-followers
progressingwithAI
experimentingwithAI
12%
6%
4%
4%
6%
12%
9%
2%
10%
39%
29%
45%
39%
42%
32%
47%
63%
49%
37%
55%
43%
49%
45%
48%
39%
30%
39%
LifeSciences
Insurance
Utilities
C&M
Banking
Energy
CG&S
PublicServices
Retail
8%
7%
42%
44%
Average
15
Industriesorderedbytheshareoffront-runnerswithineachindustry.C&M=communicationsandmedia;CG&S=consumergoodsandservices.Source:AccentureResearch.
front-runners
12%
10%
9%
9%
8%
7%
5%
5%
2%
Figure6showsthethreemost-scaledstrategic
betsbyindustry.Inlifesciences,forexample,16%
ofcompanieshavescaledtheirstrategicbeton
acceleratingtimetoapproval;14%havescaledtheirstrategicbetonacceleratingtimetoclinic;and13%havescaledtheirstrategicbetonmaximizingthe
valuepropositionofmedicines.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
Figure6:Threecheers
Thethreemostscaledstrategicbetsbyindustry
Industry#1#2#3
LifeSciences
Acceleratetimetoapproval
16%
Acceleratetimetoclinic
14%
Maximizehealthandeconomicoutcomes
13%
Insurance
Fraud
detection
23%
Call
assistance
13%
Claimsintake
12%
Utilities
Workforceoperationsoptimization
11%
Generation
forecasting
10%
Customer
pricingstrategy
9%
Communications
Self-healing
automatednetwork
13%
Agentco-pilot
12%
Fieldengineer
technicalassistant
11%
Media
Chatbotstohelpwith
contentretrieval
andcompliancequeries
18%
Frauddetectionandprevention
14%
Dynamicadcampaignsandplacement
10%
Banking
Fraudmanagement
29%
Cardsandpayments
29%
Knowyourcustomer
6%
Energy
Healthandsafety
14%
Automaticanalysisandwork-ordergeneration
13%
Tradingpredictions
11%
CG&S
Real-timecustomer
9%
Agilebrandexperiencedesignanddevelopment
7%
Hyper-personalizedconsum-erprofilingandsegmentation
7%
PublicServices
Knowledgemanagementforreportingoranalysis
27%
ITmodernizationandcodegeneration
16%
Backlogreductionsincriticalservices
16%
Retail
Automatedworkforcescheduling
6%
Channel-specific
customersegmentation
6%
Persona-baseddigital
marketingcontentcreation
5%
Source:AccentureResearch.Industriesareorderedbytheshareoffront-runnerswithineachindustry,withlifescienceshavingthegreatestshareandretailthelowestshare.Communicationsandmediaareseparatedinthistable,butnotelsewhere,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- r語言筆試題目及答案
- 2025年現代漢語應用能力考試試題及答案
- 2025年房地產經濟學與政策考試題及答案
- 2025年公共管理專業考試試題及答案
- 顯微鑒別試題及答案
- java異常面試題及答案w
- 兒科自考試題及答案
- 鄉村醫生考試試題及答案
- 環境政策對可再生能源的影響試題及答案
- 軟件設計師考試難題詳細解析試題及答案
- 河南省城市生命線安全工程建設指引V1
- 2024年河北建投能源投資股份有限公司招聘筆試參考題庫含答案解析
- JB T 6527-2006組合冷庫用隔熱夾芯板
- 質量管理制度
- 《月光下的中國》賞析
- 刑事案件模擬法庭劇本完整版五篇
- 機械力與心臟再生
- 安全風險評價風險矩陣法LEC法
- 小學心理健康教育-我會舉手發言教學設計學情分析教材分析課后反思
- 基于MATLAB仿真的烤箱的溫度控制分析
- 22S803 圓形鋼筋混凝土蓄水池
評論
0/150
提交評論