2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷含解析_第1頁
2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷含解析_第2頁
2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷含解析_第3頁
2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷含解析_第4頁
2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省鹽城市東臺鹽都重點達標名校中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.a3?a2=a6 B.(a2)3=a5 C.=3 D.2+=22.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐3.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數是()A.1 B.2 C.3 D.44.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數.小昱在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加2;阿帆在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加1.若小昱在某頁寫的數為101,則阿帆在該頁寫的數為何?()A.350 B.351 C.356 D.3585.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF6.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩定,通常需要比較他們成績的()A.眾數 B.平均數 C.中位數 D.方差7.在以下三個圖形中,根據尺規作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖38.下列方程中有實數解的是()A.x4+16=0 B.x2﹣x+1=0C. D.9.對于實數x,我們規定表示不大于x的最大整數,例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.5610.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.11.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.12.下列每組數分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次根式在實數范圍內有意義,x的取值范圍是_____.14.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設小圓形場地的半徑為x米,若要求出未知數x,則應列出方程(列出方程,不要求解方程).15.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.16.現有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.17.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.18.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?20.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(6分)某校詩詞知識競賽培訓活動中,在相同條件下對甲、乙兩名學生進行了10次測驗,他們的10次成績如下(單位:分):整理、分析過程如下,請補充完整.(1)按如下分數段整理、描述這兩組數據:成績x學生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數據的極差、平均數、中位數、眾數、方差如下表所示:學生極差平均數中位數眾數方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會選______(填“甲”或“乙),理由為______.22.(8分)(問題發現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.23.(8分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.24.(10分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數y=(k>0,x>0)的圖象上,點E從原點O出發,以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數的解析式.(2)求S與t的函數關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.25.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。26.(12分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.27.(12分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

結合選項分別進行冪的乘方和積的乘方、同底數冪的乘法、實數的運算等運算,然后選擇正確選項.【詳解】解:A.a3a2=a5,原式計算錯誤,故本選項錯誤;B.(a2)3=a6,原式計算錯誤,故本選項錯誤;C.=3,原式計算正確,故本選項正確;D.2和不是同類項,不能合并,故本選項錯誤.故選C.【點睛】本題考查了冪的乘方與積的乘方,實數的運算,同底數冪的乘法,解題的關鍵是冪的運算法則.2、C【解析】試題解析:根據主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據俯視圖是圓可判斷出該幾何體為圓柱.故選C.3、B【解析】

由二次函數圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.【點睛】本題主要考查二次函數的圖象和性質.熟練掌握圖象與系數的關系以及二次函數與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.4、B【解析】

根據題意確定出小昱和阿帆所寫的數字,設小昱所寫的第n個數為101,根據規律確定出n的值,即可確定出阿帆在該頁寫的數.【詳解】解:小昱所寫的數為1,3,5,1,…,101,…;阿帆所寫的數為1,8,15,22,…,設小昱所寫的第n個數為101,根據題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數的混合運算,弄清題中的規律是解本題的關鍵.5、B【解析】

根據三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.6、D【解析】

方差是反映一組數據的波動大小的一個量.方差越大,則各數據與其平均值的離散程度越大,穩定性也越小;反之,則各數據與其平均值的離散程度越小,穩定性越好。【詳解】由于方差能反映數據的穩定性,需要比較這兩名學生立定跳遠成績的方差.故選D.7、C【解析】【分析】根據角平分線的作圖方法可判斷圖1,根據圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【詳解】圖1中,根據作圖痕跡可知AD是角平分線;圖2中,根據作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規作圖,三角形全等的判定與性質等,熟知角平分的尺規作圖方法、全等三角形的判定與性質是解題的關鍵.8、C【解析】

A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.9、C【解析】

解:根據定義,得∴解得:.故選C.10、B【解析】

根據幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側一列有2層,右側一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.11、B【解析】

過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.12、C【解析】

根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≤1【解析】

根據二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數必須是非負數是解題的關鍵.14、π(x+5)1=4πx1.【解析】

根據等量關系“大圓的面積=4×小圓的面積”可以列出方程.【詳解】解:設小圓的半徑為x米,則大圓的半徑為(x+5)米,根據題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關系比較明顯,容易列出.15、15【解析】

根據圓的基本性質得出四邊形OABC為菱形,∠AOB=60°,然后根據同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質問題,屬于基礎題型.根據題意得出四邊形OABC為菱形是解題的關鍵.16、18°【解析】試題分析:根據圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖17、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據全等三角形的性質判斷②④;將△ADF繞點A順時針性質90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據勾股定理計算判斷③;根據等腰直角三角形的判定定理判斷⑤;根據等腰直角三角形的性質、三角形的面積公式計算,判斷⑥,根據點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,解本題的關鍵是構造全等三角形.18、4【解析】試題分析:設OB的長度為x,則根據二次函數的對稱性可得:點B的坐標為(x+2,0),點A的坐標為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數的性質.如果二次函數與x軸的兩個交點坐標為(,0)和(,0),則函數的對稱軸為直線:x=.在解決二次函數的題目時,我們一定要注意區分點的坐標和線段的長度之間的區別,如果點在x的正半軸,則點的橫坐標就是線段的長度,如果點在x的負半軸,則點的橫坐標的相反數就是線段的長度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解析】

(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據“甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,根據總價=單價×數量結合總費用不超過2550元,即可得出關于m的一元一次不等式,解之取其最大值即可得出結論.【詳解】(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,依題意,得:,解得:.答:該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元.(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,依題意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以購進1筒甲種羽毛球.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,正確列出一元一次不等式.20、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.21、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由見解析【解析】

(1)根據折線統計圖數字進行填表即可;(2)根據稽查,中位數,眾數的計算方法,求得甲成績的極差,中位數,乙成績的極差,眾數即可;(3)可分別從平均數、方差、極差三方面進行比較.【詳解】(1)由圖可知:甲的成績為:75,84,89,82,86,1,86,83,85,86,∴70?x?74無,共0個;75?x?79之間有75,共1個;80?x?84之間有84,82,1,83,共4個;85?x?89之間有89,86,86,85,86,共5個;90?x?94之間和95?x?100無,共0個.故答案為0;1;4;5;0;0;(2)由圖可知:甲的最高分為89分,最低分為75分,極差為89?75=14分;∵甲的成績為從低到高排列為:75,1,82,83,84,85,86,86,86,89,∴中位數為(84+85)=84.5;∵乙的成績為從低到高排列為:72,76,1,1,1,83,87,89,91,96,1出現3次,乙成績的眾數為1.故答案為14;84.5;1;(3)甲,理由:兩人的平均數相同且甲的方差小于乙,說明甲成績穩定;兩人的平均數相同且甲的極差小于乙,說明甲成績變化范圍小.或:乙,理由:在90≤x≤100的分數段中,乙的次數大于甲.(答案不唯一,理由須支撐推斷結論)故答案為:甲,兩人的平均數相同且甲的方差小于乙,說明甲成績穩定.【點睛】此題考查折線統計圖,統計表,平均數,中位數,眾數,方差,極差,解題關鍵在于掌握運算法則以及會用這些知識來評價這組數據.22、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60°,如圖所示:過B作BF⊥AD'于F,旋轉可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.23、1.5千米【解析】

先根據相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握運算法則24、(1)y=(x>0);(2)S與t的函數關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側時,S=t?(-3)=-3t+9與當點P2在點B的右側時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數的解析式為:y=y=(x>0);(2)根據題意得:P(t,),分兩種情況:①當點P1在點B的左側時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論