廣西水利電力職業技術學院《圖案設計》2023-2024學年第二學期期末試卷_第1頁
廣西水利電力職業技術學院《圖案設計》2023-2024學年第二學期期末試卷_第2頁
廣西水利電力職業技術學院《圖案設計》2023-2024學年第二學期期末試卷_第3頁
廣西水利電力職業技術學院《圖案設計》2023-2024學年第二學期期末試卷_第4頁
廣西水利電力職業技術學院《圖案設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁廣西水利電力職業技術學院《圖案設計》

2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的行人檢測任務中,假設要在一個擁擠的街道場景中準確檢測出行人,場景中存在光照變化、人群遮擋和復雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學習的特征,通過卷積神經網絡自動學習D.不提取任何特征,直接對原始圖像進行檢測2、在計算機視覺的圖像增強任務中,旨在改善圖像的質量。假設一張低光照條件下拍攝的照片需要增強。以下關于圖像增強方法的描述,哪一項是錯誤的?()A.可以通過直方圖均衡化方法增強圖像的對比度B.基于濾波的方法能夠去除圖像中的噪聲,同時增強細節C.圖像增強可以無限制地提高圖像的質量,不存在過度增強的問題D.深度學習中的生成對抗網絡(GAN)也可以用于圖像增強3、在計算機視覺中,圖像分類是一項基礎任務。假設我們有一組包含各種動物的圖像數據集,需要訓練一個模型來準確區分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構通常在處理大規模圖像數據集時表現出色?()A.傳統的機器學習算法,如支持向量機(SVM)B.淺層的卷積神經網絡(CNN)C.深度卷積神經網絡,如ResNetD.循環神經網絡(RNN)4、在計算機視覺的圖像生成任務中,假設要生成逼真的人臉圖像。以下關于生成模型的架構選擇,哪一項是需要特別關注的?()A.選擇傳統的多層感知機(MLP)架構B.采用生成對抗網絡(GAN)架構,通過對抗訓練生成高質量圖像C.運用卷積神經網絡(CNN)架構,但不使用池化層D.構建循環神經網絡(RNN)架構,處理圖像的序列信息5、視頻理解是計算機視覺中的一個具有挑戰性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內容,還需要考慮幀之間的時間關系B.循環神經網絡(RNN)和長短期記憶網絡(LSTM)在處理視頻序列數據時具有優勢C.視頻理解在視頻監控、行為分析和內容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經能夠完全理解復雜場景下的視頻內容,不存在任何挑戰6、在一個基于計算機視覺的機器人導航系統中,需要根據環境圖像來規劃機器人的路徑。以下哪種視覺導航方法可能更適合復雜動態環境?()A.基于地圖的導航B.基于視覺里程計的導航C.基于深度學習的端到端導航D.以上都是7、計算機視覺中的圖像超分辨率技術用于提高圖像的分辨率。假設要將一張低分辨率的圖像恢復成高分辨率圖像,以下關于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學習中的生成對抗網絡(GAN)在圖像超分辨率任務中無法發揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質量和內容的限制D.結合先驗知識和深度學習的方法可以改善圖像超分辨率的效果8、假設要開發一個能夠對文物進行數字化保護和修復的計算機視覺系統,需要對文物的破損部分進行準確識別和重建。以下哪種技術在文物修復方面可能具有應用潛力?()A.圖像修復算法B.三維重建技術C.虛擬增強現實技術D.以上都是9、假設我們要開發一個計算機視覺系統,用于檢測生產線上產品的表面缺陷。由于產品的種類繁多、缺陷類型復雜,以下哪種方法可能需要更多的計算資源和時間來訓練模型?()A.基于傳統機器學習的方法B.基于淺層神經網絡的方法C.基于深度學習的方法D.基于模板匹配的方法10、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關聯和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關系C.語義理解在圖像描述生成、問答系統等任務中發揮著重要作用D.語義理解已經達到了非常完美的程度,能夠準確理解任何復雜的圖像或視頻內容11、圖像分類是計算機視覺的基礎任務之一。假設要對一組動物圖片進行分類,區分貓、狗、兔子等。以下關于圖像分類方法的描述,哪一項是不準確的?()A.傳統的機器學習方法,如支持向量機(SVM),也可以用于圖像分類任務B.深度學習中的卷積神經網絡(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數據增強技術,如旋轉、裁剪、翻轉等,增加訓練數據的多樣性12、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的邊界優化?()A.條件隨機場B.全連接條件隨機場C.深度學習D.以上都是13、在醫學圖像分析中,計算機視覺技術有助于疾病的診斷和治療。假設醫生需要對一組肺部CT圖像進行分析,以檢測是否存在腫瘤。以下關于醫學圖像分析中的計算機視覺的描述,哪一項是不準確的?()A.計算機視覺算法可以自動檢測和定位肺部腫瘤,提高診斷的效率和準確性B.能夠對圖像進行增強和預處理,突出病變區域,便于醫生觀察和判斷C.由于醫學圖像的復雜性和個體差異,計算機視覺的結果總是完全準確無誤的D.可以通過大量標注的醫學圖像數據進行訓練,學習正常和異常的圖像特征14、對于圖像分類任務,假設需要對大量的自然風景圖像進行分類,包括山脈、森林、海灘和沙漠等場景。這些圖像在光照、拍攝角度和季節等方面存在較大差異。為了提高圖像分類的準確性和泛化能力,以下哪種策略是至關重要的?()A.增加數據增強操作,如旋轉、翻轉和顏色變換B.只使用少量具有代表性的圖像進行訓練C.選擇簡單的分類模型,避免過擬合D.不進行任何預處理,直接使用原始圖像訓練模型15、計算機視覺中的醫學圖像分析對于疾病的診斷和治療具有重要意義。以下關于醫學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術在醫學圖像分析中取得了顯著的成果,但也面臨數據標注困難和模型泛化能力不足的問題C.醫學圖像分析需要遵循嚴格的醫學標準和倫理規范,確保結果的準確性和可靠性D.醫學圖像分析完全依賴于計算機視覺技術,醫生的經驗和專業知識不再重要16、對于視頻中的目標跟蹤任務,假設目標在視頻中經歷了快速的外觀變化和嚴重的遮擋。以下哪種策略有助于保持跟蹤的準確性和穩定性?()A.結合目標的運動模型和外觀模型進行預測B.僅依賴目標的初始外觀特征進行跟蹤C.當出現遮擋時,停止跟蹤并等待目標重新出現D.隨機調整跟蹤算法的參數17、在計算機視覺的場景理解任務中,需要理解整個圖像的語義信息。假設要分析一張城市街道的圖像中包含的物體和它們之間的關系,以下關于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學習中的語義分割和圖模型可以更好地理解場景的結構和語義關系D.場景理解只適用于簡單的室內場景,對于復雜的戶外場景無法處理18、在計算機視覺的視覺跟蹤與監控應用中,需要對特定目標進行持續的跟蹤和監測。假設要對一個在大型商場中移動的可疑人員進行跟蹤,同時要應對人群遮擋和環境變化。以下哪種視覺跟蹤與監控技術在這種情況下能夠提供更可靠的跟蹤結果?()A.多目標跟蹤算法B.基于深度學習的單目標跟蹤C.基于粒子濾波的跟蹤D.基于特征匹配的跟蹤19、在計算機視覺中,目標檢測是一項重要任務。假設要在一張包含眾多物體的復雜圖像中準確檢測出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態,而且背景也較為復雜。為了實現高精度的車輛檢測,以下哪種方法通常被認為是最有效的?()A.基于傳統圖像處理技術,如邊緣檢測和形態學操作B.使用基于深度學習的目標檢測算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據預先定義的車輛模板進行匹配D.對圖像進行全局特征提取,然后基于這些特征進行分類20、計算機視覺中的顯著性檢測旨在找出圖像中引人注目的區域。假設要在一張復雜的自然風景圖像中檢測顯著性區域,以下關于顯著性檢測方法的描述,哪一項是不正確的?()A.基于對比度的方法通過計算圖像區域與周圍區域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學習方法能夠學習圖像的全局和局部特征,實現更準確的顯著性檢測D.顯著性檢測的結果總是與人類的視覺注意力機制完全一致,沒有偏差二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機視覺在海洋考古中的作用。2、(本題5分)簡述圖像的小波變換的特點。3、(本題5分)描述計算機視覺在海洋物理過程研究中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)探討某學術會議的論文集封面和排版設計,研究其如何體現會議的主題和學術氛圍,方便讀者閱讀和檢索。2、(本題5分)分析某博物館的展覽海報設計,探討其如何運用視覺元素吸引觀眾參觀展覽,傳達展覽的主題和文化內涵。3、(本題5分)觀察某城市的公共交通導向系統設計,分析其標識、線路圖、色彩搭配等方面如何有效地引導乘客,提高出行效率,同時考慮到不同人群的需求和使用場景。4、(本題5分)以某珠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論