




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濟寧市魚臺縣中考數學對點突破模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.42.如圖所示,在長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm23.若x是2的相反數,|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或44.如圖,平行四邊形ABCD中,E,F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.5.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.6.已知,則的值為A. B. C. D.7.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關系是()A.相交B.相切C.相離D.無法確定8.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.249.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發后的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發h后與甲相遇 D.甲比乙晚到B地2h10.某校數學興趣小組在一次數學課外活動中,隨機抽查該校10名同學參加今年初中學業水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數為38分B.這10名同學體育成績的平均數為38分C.這10名同學體育成績的眾數為39分D.這10名同學體育成績的方差為2二、填空題(共7小題,每小題3分,滿分21分)11.若一組數據1,2,3,的平均數是2,則的值為______.12.如圖,在邊長為6的菱形ABCD中,分別以各頂點為圓心,以邊長的一半為半徑,在菱形內作四條圓弧,則圖中陰影部分的周長是___結果保留13.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.14.如圖,為了測量鐵塔AB高度,在離鐵塔底部(點B)60米的C處,測得塔頂A的仰角為30°,那么鐵塔的高度AB=________米.15.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數y=-.如果此時四邊形的面積等于,那么點的坐標是________.16.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.17.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.19.(5分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.20.(8分)2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據調查統計結果,繪制了如圖所示的不完整的三種統計圖表.對冬奧會了解程度的統計表對冬奧會的了解程度百分比A非常了解10%B比較了解15%C基本了解35%D不了解n%(1)n=;(2)扇形統計圖中,D部分扇形所對應的圓心角是;(3)請補全條形統計圖;(4)根據調查結果,學校準備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現設計了如下游戲來確定誰參賽,具體規則是:把四個完全相同的乒乓球標上數字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數字和為偶數,則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.21.(10分)清朝數學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產糧相當于實田4.7畝;若有山田5畝,場地3畝,其產糧相當于實田5.5畝,問每畝山田和每畝場地產糧各相當于實田多少畝?22.(10分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.23.(12分)某化工材料經銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規定其銷售單價不高于每千克70元,不低于每千克40元.經市場調查發現,日銷量y(千克)是銷售單價x(元)的一次函數,且當x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數關系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式;當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?24.(14分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖2、B【解析】
根據題意,剩下矩形與原矩形相似,利用相似形的對應邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點睛】本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關鍵.3、D【解析】
直接利用相反數以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數的混合運算,正確得出x,y的值是解題關鍵.4、B【解析】
由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.5、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.
∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.6、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.7、C【解析】
首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,
∴點O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關系.解題關鍵點:理解直線與圓的位置關系的判定方法.8、D【解析】分析:根據有理數的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.9、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發一小時,用1小時走完全程,可得速度為40km/h.故選B10、C【解析】試題分析:10名學生的體育成績中39分出現的次數最多,眾數為39;第5和第6名同學的成績的平均值為中位數,中位數為:=39;平均數==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數;中位數;眾數.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據這組數據的平均數是1和平均數的計算公式列式計算即可.【詳解】∵數據1,1,3,的平均數是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數的定義,根據平均數的定義建立方程求解是解題的關鍵.12、【解析】
直接利用已知得出所有的弧的半徑為3,所有圓心角的和為:菱形的內角和,即可得出答案.【詳解】由題意可得:所有的弧的半徑為3,所有圓心角的和為:菱形的內角和,故圖中陰影部分的周長是:6π.故答案為6π.【點睛】本題考查了弧長的計算以及菱形的性質,正確得出圓心角是解題的關鍵.13、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.14、20【解析】
在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【詳解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案為20.【點睛】本題考查的知識點是解三角形的實際應用,解題的關鍵是熟練的掌握解三角形的實際應用.15、(-5,)【解析】分析:依據點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據點B2落在函數y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數的綜合題的知識,解答本題的關鍵是熟練掌握反比例函數的性質以及平移的性質.在平面直角坐標系內,把一個圖形各個點的橫坐標都加上(或減去)一個整數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度.16、1【解析】
根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數的應用,解題關鍵在于列出方程組.17、1【解析】
根據題意,可以求得∠B的度數,然后根據解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質、等腰三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(1).【解析】
(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關鍵.19、答案見解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中點,可知BD=CD,利用AAS可證△BFD≌△CED,從而有DE=DF.20、(1)40;(2)144°;(3)作圖見解析;(4)游戲規則不公平.【解析】
(1)根據統計圖可以求出這次調查的n的值;
(2)根據統計圖可以求得扇形統計圖中D部分扇形所對應的圓心角的度數;
(3)根據題意可以求得調查為D的人數,從而可以將條形統計圖補充完整;
(4)根據題意可以寫出樹狀圖,從而可以解答本題.【詳解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案為40;(2)扇形統計圖中D部分扇形所對應的圓心角是:360°×40%=144°,故答案為144°;(3)調查的結果為D等級的人數為:400×40%=160,故補全的條形統計圖如右圖所示,(4)由題意可得,樹狀圖如右圖所示,P(奇數)P(偶數)故游戲規則不公平.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、每畝山田產糧相當于實田0.9畝,每畝場地產糧相當于實田畝.【解析】
設每畝山田產糧相當于實田x畝,每畝場地產糧相當于實田y畝,根據山田3畝,場地6畝,其產糧相當于實田4.7畝;又山田5畝,場地3畝,其產糧相當于實田5.5畝,列二元一次方程組求解.【詳解】解:設每畝山田產糧相當于實田x畝,每畝場地產糧相當于實田y畝.可列方程組為解得答:每畝山田相當于實田0.9畝,每畝場地相當于實田畝.22、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據平移的性質得出平移后的圖從而得到點的坐標;(2)根據位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理23、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)當銷售單價為70元時,該公司日獲利最大,為2050元.【解析】
(1)根據y與x成一次函數解析式,設為y=kx+b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信用社計算機試題及答案
- 新疆公務員考試試題及答案
- 互聯網直播平臺流量分成合作協議
- 海外法律文書快遞保險增值服務補充協議書
- 同聲傳譯培訓與翻譯軟件租賃及維護服務協議
- 外資銀行中國區客戶經理職位聘用與離職管理合同
- 心理學招聘面試題庫及答案
- 頂尖管理人才關鍵職位專項聘用協議
- 護理進修結業收獲
- 生產線設備基礎施工及精密機械安裝與調試服務協議
- IDEA-低空經濟發展白皮書(2.0)全數字化方案
- 跆拳道體能測試登記表
- 一年級奧林匹克數學競賽2023小學決賽試卷三【試卷+答案】
- 2023年10月江蘇省高等教育自學考試機床與數控技術
- 《網絡安全與個人信息保護》主題班會課件
- 原發性肝癌英文版培訓課件
- 城市管理綜合行政執法與執法程序課件
- 巴西介紹1-課件
- 幼兒園課件小小銀行家
- 學生自行離校的協議書
- 常見病媒生物識別與監測教學課件
評論
0/150
提交評論