




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省湖州市吳興區達標名校中考猜題數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數量,用科學記數法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人2.已知關于x的不等式3x﹣m+1>0的最小整數解為2,則實數m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤73.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統計如下:閱讀時間(小時)22.533.54學生人數(名)12863則關于這20名學生閱讀小時數的說法正確的是()A.眾數是8 B.中位數是3C.平均數是3 D.方差是0.344.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數為()A.2 B.3 C.4 D.55.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱6.計算1+2+22+23+…+22010的結果是()A.22011–1 B.22011+1C. D.7.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a68.據悉,超級磁力風力發電機可以大幅度提升風力發電效率,但其造價高昂,每座磁力風力發電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1089.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統計表如下.成績人數(頻數)百分比(頻率)050.2105150.42050.1根據表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績為10分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數為15分10.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數關系的圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.使得分式值為零的x的值是_________;12.25位同學10秒鐘跳繩的成績匯總如下表:人數1234510次么跳繩次數的中位數是_____________.13.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F兩點.若AC=,∠AEO=120°,則FC的長度為_____.14.自2008年9月南水北調中線京石段應急供水工程通水以來,截至2018年5月8日5時52分,北京市累計接收河北四庫來水和丹江口水庫來水達50億立方米.已知丹江口水庫來水量比河北四庫來水量的2倍多1.82億立方米,求河北四庫來水量.設河北四庫來水量為x億立方米,依題意,可列一元一次方程為_____.15.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.16.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.17.如圖,在菱形ABCD中,點E、F在對角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.三、解答題(共7小題,滿分69分)18.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環保節能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?19.(5分)有一個二次函數滿足以下條件:①函數圖象與x軸的交點坐標分別為A(1,0),B(x1,y1)(點B在點A的右側);②對稱軸是x=3;③該函數有最小值是﹣1.(1)請根據以上信息求出二次函數表達式;(1)將該函數圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結合畫出的函數圖象求x3+x4+x5的取值范圍.20.(8分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數;(2)求證:BC是⊙O的切線.21.(10分)某中學為了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統計(設每天的誦讀時間為分鐘),將調查統計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數據繪制成如下兩幅不完整的統計圖.請根據圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經典”時間的中位數落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經典”的時間不低于分鐘的學生約有多少人?22.(10分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.23.(12分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數24.(14分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】用科學記數法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.2、A【解析】
先解出不等式,然后根據最小整數解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.3、B【解析】
A、根據眾數的定義找出出現次數最多的數;B、根據中位數的定義將這組數據從小到大重新排列,求出最中間的2個數的平均數,即可得出中位數;C、根據加權平均數公式代入計算可得;D、根據方差公式計算即可.【詳解】解:A、由統計表得:眾數為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數是第10個和第11個學生的閱讀小時數,都是3,故中位數是3,所以此選項正確;C、平均數=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數;中位數;眾數.4、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側正方體上添加1個,往第3排中間正方體上添加2個、右側兩個正方體上再添加1個,即一共添加4個小正方體,故選C.5、A【解析】
由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.6、A【解析】
可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關鍵.7、D【解析】
根據二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.
a6÷a2=a4≠a3,故C選項錯誤;D.
(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數冪的除法及冪的乘方運算,熟記法則是解題的關鍵.8、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).9、B【解析】
根據頻數÷頻率=總數可求出參加人數,根據分別求出5分、15分、0分的人數,即可求出平均分,根據0分的頻率即可求出800人中0分的人數,根據中位數的定義求出中位數,對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績為:=10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績為10分、15分,∴抽到同學參加知識競賽成績的中位數為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數及中位數的定義,熟練掌握相關知識是解題關鍵.10、C【解析】分析:本題需要分兩種情況來進行計算得出函數解析式,即當點N和點D重合之前以及點M和點B重合之前,根據題意得出函數解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數;當2≤t≤4時,S=t,為一次函數,故選C.點睛:本題主要考查的就是函數圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數關系式.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
根據分式的性質,要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質,關鍵在于分式的分母不能為0.12、20【解析】分析:根據中位數的定義進行計算即可得到這組數據的中位數.詳解:由中位數的定義可知,這次跳繩次數的中位數是將這25位同學的跳繩次數按從小到大排列后的第12個和13個數據的平均數,∵由表格中的數據分析可知,這組數據按從小到大排列后的第12個和第13個數據都是20,∴這組跳繩次數的中位數是20.故答案為:20.點睛:本題考查的是怎樣確定一組數據的中位數,解題的關鍵是弄清“中位數”的定義:“把一組數據按從小到大的順序排列后,若數據組中共有奇數個數據,則最中間一個數據是該組數據的中位數;若數據組中數據的個數為偶數個,則最中間兩個數據的平均數是這組數據的中位數”.13、1【解析】
先根據矩形的性質,推理得到OF=CF,再根據Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四邊形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案為:1.【點睛】本題考查矩形的性質以及解直角三角形的運用,解題關鍵是掌握:矩形的對角線相等且互相平分.14、【解析】【分析】河北四庫來水量為x億立方米,根據等量關系:河北四庫來水和丹江口水庫來水達50億立方米,列方程即可得.【詳解】河北四庫來水量為x億立方米,則丹江口水庫來水量為(2x+1.82)億立方米,由題意得:x+(2x+1.82)=50,故答案為x+(2x+1.82)=50.【點睛】本題考查了一元一次方程的應用,弄清題意,找出等量關系列出方程是關鍵.15、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.16、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.17、【解析】
利用正方形對角線相等且互相平分,得出EO=AO=BE,進而得出答案.【詳解】解:∵四邊形AECF為正方形,
∴EF與AC相等且互相平分,
∴∠AOB=90°,AO=EO=FO,
∵BE=DF=BD,
∴BE=EF=FD,
∴EO=AO=BE,
∴tan∠ABE==.
故答案為:【點睛】此題主要考查了正方形的性質以及銳角三角函數關系,正確得出EO=AO=BE是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】
(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數,所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數量關系,列出方程組或不等式組解決問題.19、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解析】
(1)利用二次函數解析式的頂點式求得結果即可;(1)由已知條件可知直線與圖象“G”要有3個交點.分類討論:分別求得平行于x軸的直線與圖象“G”有1個交點、1個交點時x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個交點時x3+x4+x5的取值范圍.【詳解】(1)有上述信息可知該函數圖象的頂點坐標為:(3,﹣1)設二次函數表達式為:y=a(x﹣3)1﹣1.∵該圖象過A(1,0)∴0=a(1﹣3)1﹣1,解得a=.∴表達式為y=(x﹣3)1﹣1(1)如圖所示:由已知條件可知直線與圖形“G”要有三個交點1當直線與x軸重合時,有1個交點,由二次函數的軸對稱性可求x3+x4=6,∴x3+x4+x5>11,當直線過y=(x﹣3)1﹣1的圖象頂點時,有1個交點,由翻折可以得到翻折后的函數圖象為y=﹣(x﹣3)1+1,∴令(x﹣3)1+1=﹣1時,解得x=3+1或x=3﹣1(舍去)∴x3+x4+x5<9+1.綜上所述11<x3+x4+x5<9+1.【點睛】考查了二次函數綜合題,涉及到待定系數法求二次函數解析式,拋物線的對稱性質,二次函數圖象的幾何變換,直線與拋物線的交點等知識點,綜合性較強,需要注意“數形結合”數學思想的應用.20、(1)60°;(2)見解析【解析】
(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據CD與AB平行,得到一對內錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數定義求出tanC的值,即可確定出∠C的度數;(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內角互補,求出∠ABC度數,由∠ABC﹣∠ABO度數確定出∠OBC度數為90,即可得證;【詳解】(1)如圖,連接BD,∵AD為圓O的直徑,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tanC=,∴∠C=60°;(2)連接OB,∵∠A=30°,OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC為圓O的切線.【點睛】此題考查了切線的判定,熟練掌握性質及定理是解本題的關鍵.21、)補全的條形圖見解析()Ⅱ級.().【解析】試題分析:(1)根據Ⅱ級的人數和所占的百分比即可求出總數,從而求出三級人數,進而補全圖形;(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.;(3)由樣本估計總體,由于時間不低于的人數占,故該類學生約有408人.試題解析:(1)本次隨機抽查的人數為:20÷40%=50(人).三級人數為:50-13-20-7=10.補圖如下:(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.(3)由樣本估計總體,由于時間不低于的人數占,所以該類學生約有.22、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】
(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意列出方程組求解,(2)①據題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數,所以x取34,y取最大值,(3)據題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數,∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數量滿足33≤x≤70的整數時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流公司設備采購合同
- 綠色環保產品開發與銷售協議
- 軟件行業軟件開發與技術服務解決方案
- 商業園區物業管理合作協議
- 行政管理心理學知識圖譜建立試題及答案
- 行政管理中的人本管理思想試題及答案
- 2025技術授權借貸合同范本
- 2025工程承包勞務合同
- 2025非官方產權房買賣合同范本
- 自考行政管理總結分類試題及答案
- 臨床抽血查對制度
- 未屆期股權轉讓后的出資責任歸屬
- 企業生產計劃與安全管理的協同策略研究
- 全國第三屆職業技能大賽(化學實驗室技術)選拔賽理論考試題庫(含答案)
- 數字與圖像處理-終結性考核-國開(SC)-參考資料
- 老年患者血液透析的護理
- 山東省煙臺市2025屆高三第二次模擬考試英語試卷含解析
- 兒童重癥患兒護理
- DB15T3644-2024 國有企業陽光采購規范
- 考點12二項分布及其應用(原卷版)
- 《中醫經絡學說》課件
評論
0/150
提交評論